X100/301

NATIONAL QUALIFICATIONS 2009 THURSDAY, 21 MAY 9.00 AM - 10.30 AM MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A – Questions 1–20 (40 marks)

Instructions for completion of **Section A** are given on page two. For this section of the examination you must use an **HB pencil**.

Section B (30 marks)

- 1 Full credit will be given only where the solution contains appropriate working.
- 2 Answers obtained by readings from scale drawings will not receive any credit.

Read carefully

- 1 Check that the answer sheet provided is for Mathematics Higher (Section A).
- 2 For this section of the examination you must use an **HB pencil** and, where necessary, an eraser.
- Check that the answer sheet you have been given has your name, date of birth, SCN (Scottish Candidate Number) and Centre Name printed on it.
 Do not change any of these details.
- 4 If any of this information is wrong, tell the Invigilator immediately.
- 5 If this information is correct, **print** your name and seat number in the boxes provided.
- 6 The answer to each question is **either** A, B, C or D. Decide what your answer is, then, using your pencil, put a horizontal line in the space provided (see sample question below).
- 7 There is **only one correct** answer to each question.
- 8 Rough working should **not** be done on your answer sheet.
- 9 At the end of the exam, put the answer sheet for Section A inside the front cover of your answer book.

Sample Question

A curve has equation $y = x^3 - 4x$.

What is the gradient at the point where x = 2?

A 8
B 1
C 0
D -4

The correct answer is **A**—8. The answer **A** has been clearly marked in **pencil** with a horizontal line (see below).

Changing an answer

If you decide to change your answer, carefully erase your first answer and, using your pencil, fill in the answer you want. The answer below has been changed to **D**.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

:
$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$
 $\sin 2A = 2\sin A \cos A$
 $\cos 2A = \cos^2 A - \sin^2 A$
 $= 2\cos^2 A - 1$
 $= 1 - 2\sin^2 A$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
$\cos ax$	$\frac{1}{a}\sin ax + C$

[Turn over

SECTION A

ALL questions should be attempted.

- 1. A sequence is defined by $u_{n+1} = 3u_n + 4$ with $u_1 = 2$. What is the value of u_3 ?
 - A 34
 - B 21
 - C 18
 - D 13

2. A circle has equation $x^2 + y^2 + 8x + 6y - 75 = 0$. What is the radius of this circle?

- A 5
- B 10
- C $\sqrt{75}$
- D $\sqrt{175}$
- 3. Triangle PQR has vertices at P(-3, -2), Q(-1, 4) and R(3, 6).PS is a median. What is the gradient of PS?
 - A -2
 - B $-\frac{7}{4}$
 - C 1
 - D $\frac{7}{4}$
- 4. A curve has equation $y = 5x^3 12x$.

What is the gradient of the tangent at the point (1, -7)?

- A –7
- В -5
- C 3
- D 5

- 5. Here are two statements about the points S(2, 3) and T(5, -1):
 - (1) The length of ST = 5 units;
 - (2) The gradient of $ST = \frac{4}{3}$.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.
- 6. A sequence is generated by the recurrence relation $u_{n+1} = 0.7u_n + 10$. What is the limit of this sequence as $n \to \infty$?
 - $\begin{array}{rcl}
 A & \frac{100}{3} \\
 B & \frac{100}{7} \\
 C & \frac{17}{100} \\
 D & \frac{3}{10}
 \end{array}$
- 7. If the exact value of $\cos x$ is $\frac{1}{\sqrt{5}}$, find the exact value of $\cos 2x$.

$$A \quad -\frac{3}{5}$$
$$B \quad -\frac{2}{\sqrt{5}}$$
$$C \quad \frac{2}{\sqrt{5}}$$
$$D \quad \frac{3}{5}$$

[Turn over

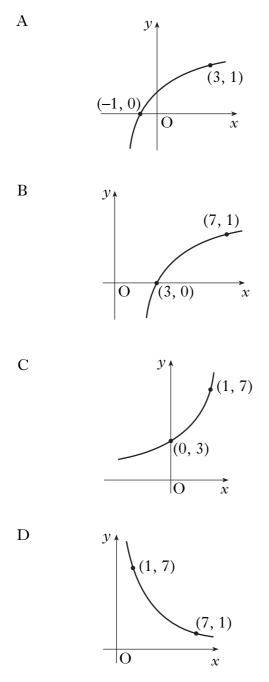
8. What is the derivative of $\frac{1}{4x^3}$, $x \neq 0$?

A
$$\frac{1}{12x^{2}}$$

B
$$-\frac{1}{12x^{2}}$$

C
$$\frac{4}{x^{4}}$$

D
$$-\frac{3}{4x^{4}}$$


9. The line with equation y = 2x intersects the circle with equation $x^2 + y^2 = 5$ at the points J and K.

What are the *x*-coordinates of J and K?

A
$$x_{J} = 1, x_{K} = -1$$

B $x_{J} = 2, x_{K} = -2$
C $x_{J} = 1, x_{K} = -2$

D $x_{\rm J} = -1, x_{\rm K} = 2$

10. Which of the following graphs has equation $y = \log_5(x - 2)$?

[Turn over

11. How many solutions does the equation

$$(4\sin x - \sqrt{5})(\sin x + 1) = 0$$

have in the interval $0 \le x < 2\pi$?

- A 4
- B 3
- C 2
- D 1

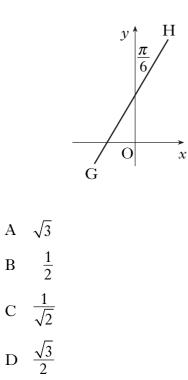
12. A function *f* is given by $f(x) = 2x^2 - x - 9$.

Which of the following describes the nature of the roots of f(x) = 0?

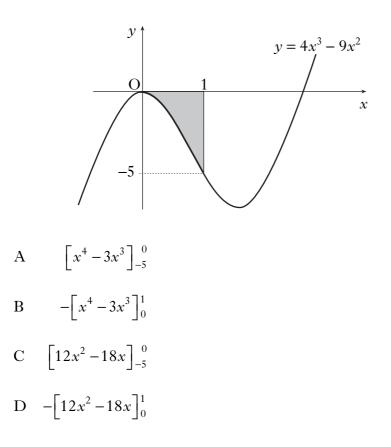
- A No real roots
- B Equal roots
- C Real distinct roots
- D Rational distinct roots
- **13.** k and a are given by

$$k \sin a^{\circ} = 1$$
$$k \cos a^{\circ} = \sqrt{3}$$

where k > 0 and $0 \le a \le 90$.


What are the values of *k* and *a*?

	k	a
А	2	60
В	2	30
С	$\sqrt{10}$	60
D	$\sqrt{10}$	30


14. If
$$f(x) = 2\sin\left(3x - \frac{\pi}{2}\right) + 5$$
, what is the range of values of $f(x)$?

A
$$-1 \le f(x) \le 11$$

B $2 \le f(x) \le 8$
C $3 \le f(x) \le 7$
D $-3 \le f(x) \le 7$

15. The line GH makes an angle of $\frac{\pi}{6}$ radians with the *y*-axis, as shown in the diagram. What is the gradient of GH?

16. The graph of $y = 4x^3 - 9x^2$ is shown in the diagram. Which of the following gives the area of the shaded section?

17. The vector \boldsymbol{u} has components $\begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$.

Which of the following is a unit vector parallel to *u*?

A $-\frac{3}{5}i + \frac{4}{5}k$ B -3i + 4kC $-\frac{3}{\sqrt{7}}\boldsymbol{i} + \frac{4}{\sqrt{7}}\boldsymbol{k}$

D
$$-\frac{1}{3}\boldsymbol{i} + \frac{1}{4}\boldsymbol{k}$$

18. Given that $f(x) = (4 - 3x^2)^{-\frac{1}{2}}$ on a suitable domain, find f'(x). A $-3x(4-3x^2)^{-\frac{1}{2}}$ B $-\frac{1}{2}(4-6x)^{-\frac{3}{2}}$ C $2(4-3x^3)^{\frac{1}{2}}$ D $3x(4-3x^2)^{-\frac{3}{2}}$

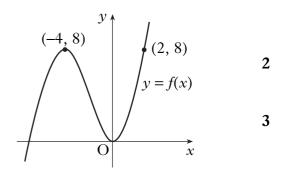
19. For what values of x is $6 + x - x^2 < 0$?

- A x > 3 only
- B x < -2 only
- C x < -2, x > 3
- D -3 < x < 2

20. $A = 2\pi r^2 + 6\pi r$.

What is the rate of change of *A* with respect to *r* when r = 2?

- 10π А
- В 12π
- C 14π
- D 20π


[END OF SECTION A]

SECTION B

ALL questions should be attempted.

Triangle PQR has vertex P on the 21. y 1 Q(4, 6)*x*-axis, as shown in the diagram. 6x - 7y + 18 = 0Q and R are the points (4, 6) and (8, -2)Т respectively. The equation of PQ is 6x - 7y + 18 = 0. Ο \hat{x} (a) State the coordinates of P. Ρ 1 R(8, -2)(b) Find the equation of the altitude of the triangle from P. 3 (c) The altitude from P meets the line 4 QR at T. Find the coordinates of T. 22. D, E and F have coordinates (10, -8, -15), (1, -2, -3) and (-2, 0, 1) respectively. (a) (i) Show that D, E and F are collinear. (ii) Find the ratio in which E divides DF. 4 (b) G has coordinates (k, 1, 0).

- Given that DE is perpendicular to GE, find the value of k.
- **23.** The diagram shows a sketch of the function y = f(x).
 - (a) Copy the diagram and on it sketch the graph of y = f(2x).
 - (b) On a separate diagram sketch the graph of y = 1 f(2x).

[Turn over for Question 24 on Page twelve

4

Marks

24. (a) Using the fact that
$$\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$$
, find the exact value of $\sin\left(\frac{7\pi}{12}\right)$. 3

(b) Show that
$$sin(A + B) + sin(A - B) = 2sin A cos B$$
. 2

(c) (i) Express
$$\frac{\pi}{12}$$
 in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.

(ii) Hence or otherwise find the exact value of $\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$. 4

[END OF SECTION B] [END OF QUESTION PAPER]

X100/302

NATIONAL QUALIFICATIONS 2009 THURSDAY, 21 MAY 10.50 AM - 12.00 NOON MATHEMATICS HIGHER Paper 2

Read Carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

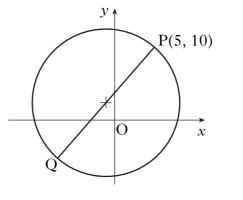
Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
$\cos ax$	$\frac{1}{a}\sin ax + C$

8

3

3


4

5

1

5

- 1. Find the coordinates of the turning points of the curve with equation $y = x^3 3x^2 9x + 12$ and determine their nature.
- 2. Functions f and g are given by f(x) = 3x + 1 and $g(x) = x^2 2$.
 - (a) (i) Find p(x) where p(x) = f(g(x)).
 (ii) Find q(x) where q(x) = g(f(x)).
 - (*b*) Solve p'(x) = q'(x).
- (a) (i) Show that x = 1 is a root of x³ + 8x² + 11x 20 = 0.
 (ii) Hence factorise x³ + 8x² + 11x 20 fully.
 - (b) Solve $\log_2(x+3) + \log_2(x^2+5x-4) = 3$.
- 4. (a) Show that the point P(5, 10) lies on circle C₁ with equation $(x+1)^2 + (y-2)^2 = 100.$
 - (b) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q.

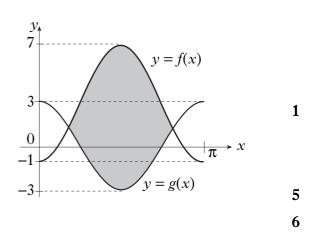
(c) Two circles, C₂ and C₃, touch circle C₁ at Q.
The radius of each of these circles is twice the radius of circle C₁.
Find the equations of circles C₂ and C₃.

4

[Turn over

2

3

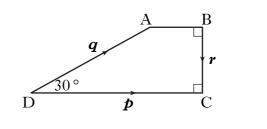

6

4

5. The graphs of y = f(x) and y = g(x) are shown in the diagram.

 $f(x) = -4\cos(2x) + 3$ and g(x) is of the form $g(x) = m\cos(nx)$.

- (*a*) Write down the values of *m* and *n*.
- (b) Find, correct to one decimal place, the coordinates of the points of intersection of the two graphs in the interval $0 \le x \le \pi$.
- (*c*) Calculate the shaded area.


- 6. The size of the human population, N, can be modelled using the equation $N = N_0 e^{rt}$ where N_0 is the population in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.
 - (a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020?
 - (b) In 2006 the population of Scotland was approximately 5.1 million, with an annual rate of increase of 0.43%.

Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?

Vectors *p*, *q* and *r* are represented on the diagram shown where angle ADC = 30°.

It is also given that $|\mathbf{p}| = 4$ and $|\mathbf{q}| = 3$.

- (*a*) Evaluate $\mathbf{p}.(\mathbf{q} + \mathbf{r})$ and $\mathbf{r}.(\mathbf{p} \mathbf{q})$.
- (b) Find $|\boldsymbol{q} + \boldsymbol{r}|$ and $|\boldsymbol{p} \boldsymbol{q}|$.

[END OF QUESTION PAPER]

2009 Mathematics

Higher – Paper 1 and Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2009 Higher Mathematics Examination.

For each question the marking instructions are split into two sections, namely the Generic Marking Instructions and the Specific Marking Instructions. The Generic Marking Instructions indicate what evidence must be seen for each mark to be awarded. The Specific Marking Instructions cover the most common methods you are likely to see throughout your marking.

Below these two sections there may be comments, less common methods and common errors. In general you should use the Specific Marking Instructions together with the comments, less common methods and common errors; only use the Generic Marking Instructions where the candidate has used a method not otherwise covered.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2 Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3 The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made. This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
- 4

 Tick
 ✓
 Cross
 X
 Cross-Tick
 X
 Double Cross-Tick

Correct working should be ticked. This is essential for later stages of the SQA procedures. Where an error occurs, this should be underlined and marked with a cross at the end of the line. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick.

In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted (or wavy) line.

Work which is correct but inadequate to score any marks should be corrected with a double cross tick.

- 5 The total mark for each section of a question should be entered in **red** in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, not a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.
- 7 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking scheme, a correct answer with no working receives no credit.

- 8 There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error each one is simply an error. In general, as a consequence of one of these errors, candidates lose the opportunity of gaining the appropriate *ic* or *pd* mark.
- 9 Normally, do not penalise:
 - working subsequent to a correct answer
 - omission of units
 - legitimate variations in numerical answers
 - bad form
 - correct working in the "wrong" part of a question

unless specifically mentioned in the marking scheme.

- 10 No piece of work should be ignored without careful checking even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme. Answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 11 If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 12 In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referral to the P.A. Please see the general instructions for P.A. referrals.
- 13 No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 14 It is of great importance that the utmost care should be exercised in adding up the marks. Using the Electronic Marks Capture (EMC) screen to tally marks for you is **NOT** recommended. A manual check of the total, using the grid issued with this marking scheme, can be confirmed by the EMC system.
- 15 Provided that it has not been replaced by another attempt at a solution, working that has been crossed out by the candidate should be marked in the normal way. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

16 **Do not write any comments, words or acronyms on the scripts**.

A revised summary of acceptable notation is given on page 4.

17 Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 Tick correct working.
- 2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
- 3 Do not write marks as fractions.
- 4 Put each mark at the end of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Comments	Examples		Margins
The tick. You are not expected to tick every line but you must check through the whole of a response.	$\frac{dy}{dx} = 4x - 7$	✓ •	
The cross and underline. Underline an error and place a cross at the end of the line. The tick-cross. Use this to show correct work where you are following through subsequent to an error.	$4x - 7 = 0$ $x = \frac{7}{4}$ $y = 3\frac{7}{8}$	× ו	2
	$C = \underline{(1, -1)}$	×	
	$m = \frac{3 - (-1)}{4 - 1}$ $m_{rad} = \frac{4}{3}$ -1	∝.	
	$m_{tgt} = -\frac{4}{3}$ $m_{tgt} = -\frac{3}{4}$ $y - 3 = -\frac{3}{4}(x - 2)$	$\times \cdot $	3
	$x^2 - 3x = 28$	 · 	
The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.	\wedge		
The double cross-tick. Use this to show correct work but which is inadequate to score any marks. This may happen when working has been eased.	x = 7	*	1
Tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).	$\sin\left(x\right) = 0.75$ $= inv\sin(0.75)$		
If a solution continues later on, put an arrow in the marks margin to show this. The mark given should appear at the end.	$= 48.6^{\circ}$ $x^{3} - 4x^{2} + 8x - 5 = 0$ $(x - 1)(x^{2} - 3x + 5) = 0$?	 . 	
	The tick. You are not expected to tick every line but you must check through the whole of a response. The cross and underline. Underline an error and place a cross at the end of the line. The tick-cross. Use this to show correct work where you are following through subsequent to an error. The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc. The double cross-tick. Use this to show correct work but which is inadequate to score any marks. This may happen when working has been eased. Tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form). If a solution continues later on, put an arrow in the marks margin to show this.	The tick. You are not expected to tick every line but you must check through the whole of a response. The cross and underline. Underline an error and place a cross at the end of the line. The tick-cross. Use this to show correct work where you are following through subsequent to an error. $\begin{aligned} \frac{dx}{dx} = 4x - 7\\ \\ 4x - 7 &= 0\\ \\ x = \frac{7}{4}\\ \\ y = 3\frac{7}{8}\end{aligned}$ $C = (1,-1)\\ \\ m_{roid} = \frac{4}{3}\\ \\ m_{tgt} = -\frac{1}{4}\\ \\ y - 3 = -\frac{3}{4}(x-2)\end{aligned}$ $\begin{aligned} x^2 - 3x = 28\\ \\ x = 7\\ \\ x = 7\end{aligned}$ $\begin{aligned} x = 7\\ \\ x = 7\\ \\$	The tick. You are not expected to tick every line but you must check through the whole of a response. The cross and underline. Underline an error and place a cross at the end of the line. The tick-cross. Use this to show correct work where you are following through subsequent to an error. $\begin{aligned} &\frac{dx}{dx} = 4x - 7 & \checkmark & \\ &4x - 7 = 0 & \times \\ &x = \frac{7}{4} & \\ &y = 3\frac{7}{8} & \checkmark & \\ &y = 3\frac{7}{8} & & \\ &x & \\ &m = \frac{3 - (-1)}{4 - 1} & \\ &m_{rod} = \frac{4}{3} & & \\ &m_{tgt} = -\frac{1}{4} & \\ &y - 3 = -\frac{3}{4} & & \\ &x = 7 & & \\ &sin(x) = 0.75 & \\ &= inv sin(0.75) & \\ &\hline &x^3 - 4x^2 + 8x - 5 = 0 & \\ &(x - 1)(x^2 - 3x + 5) = 0 & \\ &\end{array}$

Bullets showing where marks are being allocated may be shown on scripts.

Please use the above and nothing else. All of these are to help us be more consistent and accurate.

Page 5 lists the syllabus coding for each topic. This information is given in the legend above the question. The calculator classification is CN(calculator neutral), CR(calculator required) and NC(non-calculator).

					(iii) (iii)
١٩	determine range/domain	A15		A28	use the laws of logs to simplify/find equiv. expression
40	recomise general features of anable wall era log	A16		420	
83	sketch and annotate related functions	A17		A30	_
A4	obtain a formula for composite function	A18	-	A31	
A5	complete the source	A19	form an equation with onen roots	A32	
A6	interpret equations and expressions	A20		A33	
A7				A34	apply A28-A33 to problems
A8	-				
A9					
A10	use the notation un for the nth term	A21	use Rem Th. For values, factors, roots	G16	calculate the length of a vector
A11	-	A22	-	G17	calculate the 3rd given two from A,B and vector AB
A12		A23		G18	
A13		A24	-	G19	use: if \mathbf{u} , \mathbf{v} are parallel then $\mathbf{v} = k\mathbf{u}$
A14	apply A10-A14 to problems	A25	find intersection of two polynomials	G20	add, subtract, find scalar mult. of vectors
		A26	confirm and improve on approx roots	G21	_
		A27	apply A21-A26 to problems	G22	interpret 2D sketches of 3D situations
				G23	-
				G24	find ratio which one point divides two others
5	use the distance formula	69	find C/R of a circle from its equation/other data	G25	given a ratio, find/interpret 3rd point/vector
g	find gradient from 2 pts,/angle/equ. of line	G10	find the equation of a circle	G26	_
ទ		G11	<u> </u>	G27	use: if u , v are perpendicular then $v.u=0$
2		G12	I find intersection of line & circle	G28	calculate the angle between two vectors
GS	use property of perpendicular lines	G13	find if/when line is tangent to circle	G29	_
89		G14	find if two circles touch	G30	apply G16-G29 to problems eg geometry probs.
61		G15	apply G9-G14 to problems		
89	apply G1-G7 to problems eg intersect., concur., collin.				
1. 1					
5	differentiate sums, differences	C12		C20	-
8	differentiate negative & fractional powers	C13	integrate with negative & fractional powers	8	
8	express in differentiable form and differentiate	C14	express in integrable form and integrate	5 C	integrate $(ax + b)^n$
2	find gradient at point on curve & w	C15	evaluate definite integrals	S	
8	find equation of tangent to a polynomial/trig curve	C16	find area between curve and x-axis	C24	apply C20-C23 to problems
ຮ	<u> </u>	C17	find area between two curves		
5	find when curve strictly increasing etc	C18	solve differential equations(variables separable)		
8	find stationary points/values	C19	_		
8	-		-		
6					
5					
1 3					
F		4		T12	solve simequs of form $kcos(a)=p$, $ksin(a)=q$
	f(x) = kcos(ax+b); identify period/amplitude	18	apply compound and double angle (c & da) formulae	T13	express $pcos(x) + qsin(x)$ in form $kcos(x \pm a) etc$
12	-		in numerical & literal cases	T14	find $max/min/zeros$ of $pcos(x) + qsin(x)$
۳	_	19	apply $c \ {\mathcal E} da$ formulae in geometrical cases	T15	sketch graph of $y = pcos(x) + qsin(x)$
4	recognise form of trig. function from graph	T10	_	T16	_
12	-	T11	_	T17	_
					-

Syllabus Coding by Topic

For information only

Qu.	Кеу	Item	solution
		no.	
1.01	A	999	• $u_2 = 3 \times 2 + 4 = 10$ • $\therefore u_3 = 3 \times 10 + 4 = 34$
1.02	В	153	$x^{2} + y^{2} + 8x + 6y - 75 = 0$ • $r = \sqrt{(-4)^{2} + (-3)^{2} - (-75)}$ • $r = 10$
1.03	D	950	• $S = \left(\frac{-1+3}{2}, \frac{4+6}{2}\right) = (1,5)$ • $m_{PS} = \frac{52}{13} = \frac{7}{4}$
1.04	С	60	• $\frac{dy}{dx} = 15x^2 - 12$ • at $x = 1$, gradient = $15 - 12 = 3$
1.05	В	1201	• $ST = \sqrt{(2-5)^2 + (31)^2}$ ST = 5 • $m_{ST} = \frac{31}{2-5} = -\frac{4}{3}$
1.06	A	1239	• $L = 0.7L + 10$ • $L = \frac{10}{0.3} = \frac{100}{3}$
1.07	A	63	• $\cos(2x) = 2\cos^2(x) - 1$ • $2 \times \left(\frac{1}{\sqrt{5}}\right)^2 - 1 = -\frac{3}{5}$
1.08	D	1081	• $f(x) = \frac{1}{4}x^{-3}$ • $f'(x) = -\frac{3}{4}x^{-4}$
1.09	A	1901	• $x^{2} + (2x)^{2} = 5$ • $5x^{2} = 5, x = \pm 1$
1.10	В	1903	 x = 3, y = log(3 - 2) = 0 so B x = 7, y = log₅(7 - 2) = 1

Paper 1 Section A qu.1-10 Paper 1 Section A qu.11-20

Qu.	Кеу	Item	solution
		no.	
1.11	В	1145	• $\sin x = \frac{\sqrt{5}}{4} : 2 \ solutions$
			• $\sin x = -1:1$ solution
1.12	С	1313	• $b^2 - 4ac = 73 > 0$
			• roots are real and distinct
1.13	В	1146	• $\tan a^\circ = \frac{1}{\sqrt{3}}$ so $a = 30$
			• $k^2 = 1 + 3 \text{ so } k = 2$
1.14	С	1172	• $f_{\max} = 2 \times 1 + 5 = 7$
			$\bullet f_{\min}=2\times (-1)+5=3$
1.15	A	1396	• angle at x -axis $= \frac{\pi}{3}$
			• $m_{GH} = an \frac{\pi}{3} = \sqrt{3}$
1.16	В	1148	• integrate : $x^4 - 3x^3$
			• limits : $-\left[\ldots\right]_{0}^{1}$
1.17	A	1133	• $ u = \sqrt{(-3)^2 + 4^2} = 5$
			• a unit vector:
			$rac{1}{5}(-3m{i}+4m{j})$
1.18	D	394	• $-\frac{1}{2}\left(4-3x^2\right)^{-\frac{3}{2}}$
			• multiplied by $-6x$
1.19	С	1002	• $(2+x)(3-x) < 0$
			solution is either
			-2 < x < 3 or $x < -2, x > 3$
			• $x = 0$ is FALSE so
1 20	0	161	x < -2 and $x > 3$
1.20	С	וסו	• $\frac{dA}{dr} = 4\pi r + 6\pi$
			• $\frac{dA}{dr}_{r=2} = 8\pi + 6\pi$
			$dr_{r=2} = 14\pi$

qu		Mark	Code	Cal	Source	SS	pd	ic	с	в	А	U1	U2	U3	1.21			
1.21	a	1	G4	cn	09013	1		1	2			1						
	b c	3 4	G7 G8	cn cn		1 1	1 2	1 1	3			3						
	-				n the <i>x</i> -a and (8,-		osner	otivo	alv						^y Q(4, 6)			
-		-			y + 18 =	· ·	espec	uve	Jy.									
	-		oordin		•	0.							1		6x - 7y + 18 = 0			
(a)						1.							1					
(b) Find the equation of the altitude of the triangle from P.												3		0				
-												3		P x				
												4						
Find the coordinates of T.													4		R(8,-2)			
The pr	The primary method im s, is based on the following conoris m s										Dr	imenr	Motha	d.ci	ve 1 mark for each •			
The primary method m.s. is based on the following generic m.s.												inary	weuro	a Gr				
This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any											.							
	-				-	-		r any				• $P = (-3, 0)$ see Notes 1, 2 • $m_{QR} = -2$ or equivalent						
alterna					e marking s	chem	e.				•2							
-	ic		erpret x		-						•3							
•2	pd	finc	l gradi	ent (o	fQR)						•4	$\frac{1}{2}$						
•3	SS	knc	w and	use <i>n</i>	$m_1 m_2 = -$	-1						u	ı.y-	$0 - \frac{1}{2}$	(x + 3) see Note 4			
•4	ic	stat	e equ.	ofalti	itude						5							
• ⁵	ic	stat	e equ.	oflin	e (QR)						•5	-			-2(x-8) or $y-6=-2(x-4)$			
•6	SS	pre	pare to	o solve	e sim. eq	Ju.						• ⁶ <i>e.g.</i> $x - 2y = -3$ and $2x + y = 14$ see Note 5 & Options						
•7	pd	solv	ve for :	x		-					•7	x	= 5					
•8											•8	У	= 4					
	P.	501	101)	,							-							
Note							N	otes	con	t					Option 1 for \bullet^5 <i>to</i> \bullet^8 :			
	/ithout a	any wo	rkina:								are or	nly avai	lable f	or	•			
	cept (–		Killg,				5.					e equat			• ⁵ $QR: y+2 = -2(x-8)$			
			= 0						-	-	5 501 1	e equat	10113 10	•	• ⁶ $\frac{1}{2}(x+3) = -2(x-8) - 2$			
	accept $x = -3$, $y = 0$ except $x = -3$, $y = 0$ PT and QR. $6 \cdot 6$ is a strate										e^{7} x = 5							

accept x = -3 and y = 0 appearing at \cdot^4 .

- 2. x = -3 appearing as a consquence of substituting y = 0 may be awarded \bullet^1 .
- 3. At \cdot^3 , whatever perpendicular gradient is found, it must be in its simplest form either at \bullet^3 or \bullet^4 .
- 4. \bullet^4 is only available as a consequence of attempting to find and use a perpendicular gradient together with whatever coordinates they have for P.
- 6. \bullet^6 is a strategy mark for juxtaposing two correctly rearranged equations. Equating zeroes does not gain \bullet^6 .
- 7. The answers for \cdot^7 and \cdot^8 must be of the form of a mixed number or a fraction (vulgar or decimal).

Common Errors

 $m_{QR} = \ldots = -1$ •2 Х •³ $X\sqrt{m_{\perp}} = 1$ •⁴ $X\sqrt{y-0} = 1(x+3)$ x = 5y = 4

Option 2 for \bullet^5 *to* \bullet^8 :

•⁵
$$QR: y-6 = -2(x-4)$$

•⁶ $\frac{1}{2}(x+3) = -2(x-4)+6$
•⁷ $x = 5$

•⁸
$$y = 4$$

•8

qu	Mk	Code	cal	Source	ss	pd	io	c C	в	A	U1	U2	U3	1.22
	a 4 b 4	G23,24 G27	cn cn	09005	1 2	2	3	4					4	_
									1				-	
D, E aı	nd F I	have coord	inates	(10, -8, -	-15),	, (1,-	-2,-	-3) a	nd (-2,0	,1) resp	ective	ely.	
<i>(a)</i>	(i)	Show that	at D, E	and F a	re co	lline	ar.						-	
(ii) Find the ratio in which E divides DF.														4
(b) G has coordinates $(k, 1, 0)$.														
	Give	n that DE i	s perp	endicula	r to C	GE, f	inc	l the v	alu	e of <i>l</i>	<i>k</i> .			4
The prim	nary me	thod m.s is ba	ased on t	he following	g gene	eric m.s	s.		P	Prima	ary Meth	nod:C	Give 1	1 mark for each •
This gen	ieric ma	rking scheme	may be ı	used as an e	equiva	llence	guio	de						
but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.								-	•	1	$\overrightarrow{DE} =$	$ \left(\begin{array}{c} -9\\ 6\\ 12 \end{array}\right) $) 0	$pr \overrightarrow{EF} = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix} \qquad \text{see Note 1}$
vice ve	1	tion expres s treated as	e						•	2 3		nd \overline{EF}	, have	tor and $\overrightarrow{DE} = 3\overrightarrow{EF}$ (or equiv.) we common point and
	SS	use vecto	or appr	oach							hence	D, E	and F	F collinear see Note 2
	ic	compare	two v	ectors					•	4	3:1			ed explicitly
•3	ic	complete	e proof	•								/	``	
•4	ic	state ratio	С						•	5	$\overrightarrow{GE} =$	-3	3	
•5	SS	use vecto	or appr	oach								(–3	;)	
•6	SS	know sca	alar pro	oduct = () for	⊥ \	vec	tors	•	6	$\overrightarrow{DE}.\overrightarrow{G}$	$\vec{E} = 0$		s∕iby • ⁷
•7	pd	start to so	olve							7	-9(1-	(k) + (5×(-	$-3) + 12 \times (-3)$
• ⁸	pd	complete	;						•	8	<i>k</i> = 7			
• ⁸ Notes	pd	complete	;		_	C	Com	mon Er			<i>k</i> = 7			

```
Notes
```

4. In (b) "G.E" =
$$\begin{pmatrix} k \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} = 0$$

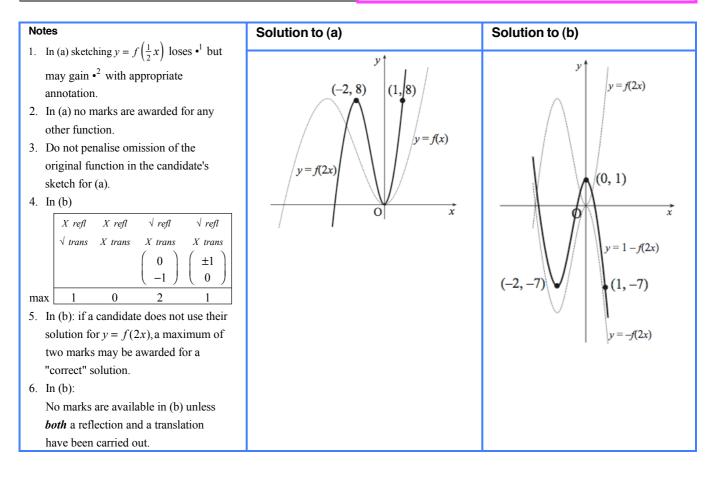
leading to $k = 2$, award 1 mark.

5. If **a** and **b** are not defined, then
merely quoting
$$a.b = 0$$
 does not
gain \bullet^6 .

 $\overrightarrow{GE} =$ 1 - k-3 -3 •⁶ X $\overrightarrow{DE.GE} = -1$ •⁷ $X\sqrt{}$ $-9(1-k) + 6 \times (-3)$ $+12 \times (-3) = -1$ $k = \frac{64}{9}$ •⁸ X√ Common Error 2 for (b) k 1 0 •⁵ X $\begin{pmatrix} k \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -9 \\ 6 \\ 12 \end{pmatrix} = 0$ •⁶ X√ • $X\sqrt{1-k} = \frac{2}{3}$ i.e. 2 marks Common Error 3 for (b) $\left(\begin{array}{c}k\\1\\0\end{array}\right)$ •⁵ X $\left(\begin{array}{c}k\\1\\0\end{array}\right)\left(\begin{array}{c}-9\\6\\12\end{array}\right)$ •⁶ X = -1• $X\sqrt{}$ $k = \frac{7}{9}$ i.e. 1 mark

Options for \cdot^{1} to \cdot^{3} : 1 •1 $\overrightarrow{DE} = \begin{pmatrix} -9\\ 6\\ 12 \end{pmatrix} \cdot^{2} \overrightarrow{DF} = \begin{pmatrix} -12\\ 8\\ 16 \end{pmatrix} = \frac{4}{3}\overrightarrow{DE}$ •3 \overrightarrow{DE} and \overrightarrow{DE} have common point and

 \overline{DE} and \overline{DF} have common point and common direction hence D, E and F collinear


2

•1

$$\overrightarrow{EF} = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix} \bullet^2 \overrightarrow{DF} = \begin{pmatrix} -12 \\ 8 \\ 16 \end{pmatrix} = 4\overrightarrow{EF}$$

•³ \overrightarrow{EF} and \overrightarrow{DF} have common point and common direction hence D, E and F collinear

qu 1.23	a	Mk 2	Code A3	cal cn	Source 09016	SS	pd	ic 2	С	В 2	A		U1 2	U2	U3	_	1.23	
	b	3	A3	cn		1		2		3			3					
The	diag	ram	shows a s	ketch	of the fu	nctic	on v =	= f	(x).									
<i>(a)</i>	-		he diagra					-		<i>y</i> =	f(2:	x).		2			<i>y</i> † 1	
<i>(b)</i>			-				-	-				<i>´</i>		3			(-4, 8) (2, 8)	
	b) On a separate diagram sketch the graph of $y = 1 - f(2x)$. 3													y = f(x)				
The pr	imary	/ meth	od m.s isba	sed on t	he following	g gene	ric m.s	6.				Primary Method : Give 1 mark for each •						
This g	enerio	c mark	ing scheme r	nay be ı	used as an e	equiva	lence g	guide	e				3 points : the origin, $(1, 8)$ and $(-2, 8)$					
but on	y wh	ere a c	andidate doe	es not us	se the prima	ary me	thod o	r any				\bullet^1		sketch and 1 point correct				
alterna	ative r	nethoo	d shown in de	tail in the	e marking s	cheme	9.					•2				-	s correct	
•1	ic		scaling pa	arallel	to <i>x</i> -axis	s						•3		reflec	rt in	r-axi	s, then vertical trans. s/iby . ⁴	
•2	ic		annotate	graph										101100		n um	s, and vertical trans. Sriby	
•3	SS		correct or	der fo	r refl(x)	& tr	ans							final	point	s : (0	(1), (1, -7) and (-2, -7)	
•4	ic		start to an	notate	e final sk	etch						•4		sketc	h anc	l 1 fir	nal point correct	
•5	ic		complete	annot	ation							• ⁵		the o	ther t	wo fi	nal points correct	

qu		Mk	Code	Cal	Source	ss	pd	ic	С	В	A		U1	U2	U3	1.24
1.24	a	3	т8,т3	nc	09002	1	1	1	3					3		
	b	2	T8	cn				2	2					2		
	c 4 T11 nc 1 1 2 1 3 4															
(a) (b) (c)		ow the E	the fact th at sin(A xpress $\frac{1}{1}$ lence or	$+B)+\frac{\pi}{2}$ in t	sin(A–l erms of	$\frac{\pi}{3} a a$	$2 \sin$ nd $\frac{\pi}{4}$	A co	sB.				. 12 /	$\left(\frac{\pi}{12}\right)$.		3 2 4

The primary method m.s is based on the following generic m.s. This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

• ¹	SS	expand compound angle
	55	expand compound angle
•2	ic	substitute exact values
•3	pd	process to a single fraction
•4	ic	start proof
•5	ic	complete proof
•6	SS	identify steps
•7	ic	start process (identify 'A' & 'B')
•8	ic	substitute
•9	pd	process

Primary Method : Give 1 mark for each •

 $\sin\frac{\pi}{3}\cos\frac{\pi}{4} + \cos\frac{\pi}{3}\sin\frac{\pi}{4}$ s/iby \cdot^2 •¹ •2 $\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times \frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}+1}{2\sqrt{2}}$ or equivalent •3 •4 $\sin A \cos B + \cos A \sin B + \dots$ •5 $\dots + \sin A \cos B - \cos A \sin B$ and complete •6 $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$ stated explicitly and A is $\frac{\pi}{3}$, B is $\frac{\pi}{4}$ s/iby \cdot^7 •7 $2\sin\frac{\pi}{3}\cos\frac{\pi}{4}$ $\bullet^8 \qquad 2 \times \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}$ $\frac{\sqrt{6}}{2} \left(\operatorname{accept} \sqrt{\frac{3}{2}} \quad or \quad \frac{\sqrt{3}}{\sqrt{2}} \quad \text{but not} \quad \frac{2\sqrt{3}}{2\sqrt{2}} \right)$ •9

No	tes	Common Errors	Alte	rnatives
1.	Candidates who work throughout	1. $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$	1. fo	$\mathbf{r} \cdot \mathbf{e}^{6}$ to \mathbf{e}^{8}
	in degrees can gain all the marks.	$\therefore \frac{\pi}{12} = \frac{1}{7} \left(\frac{\pi}{3} + \frac{\pi}{4} \right) \text{ does not gain } \bullet^6.$	•6	$\sin\left(\frac{\pi}{12}\right) = \sin\frac{\pi}{2}\cos\frac{\pi}{4} - \cos\frac{\pi}{2}\sin\frac{\pi}{4}$
2.	In (a)	12 7(3 4)		_
	$\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{4}\right) etc$		•7	$\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$
	cannot be awarded any marks.		o	$\sqrt{3} - 1$
	i.e. \bullet^1 , \bullet^2 and \bullet^3 are not available.		•°	$\frac{\sqrt{3}-1}{2\sqrt{2}}$ or equivalent
3.	In (b), candidates who use numerical			- • -
	values for A and B earn no marks.			
4.	In (c)			
	$\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right) etc$			
	cannot be awarded any marks.			
	i.e. \bullet^7 , \bullet^8 and \bullet^9 are not available.			

qu	Mk	Code	cal	Source	ss	pd	ic	с	В	А	U	1	U2	U3				2.01
2.01	8	C8,C9	cn	08507	3	4	1	8			8							
Find	the coo	rdinates o	f the tı	urning po	oints	of th	e cu	rve	with	n equ	ation	<i>y</i> =	x^3 -	$-3x^2 - 3x^2 -$	9 <i>x</i> +	12		
and o	determi	ne their na	ture.													8	;	
The pr	rimary met	hod m.s is b	ased on t	the following	g gene	ric m.s	3 .				Prim	ary	Met	hod : G	ive 1	mark for ea	ch∙	
This g	eneric ma	king scheme	may be ι	used as an e	equiva	lence	guide											
but on	ly where a	candidate do	bes not us	se the prima	iry me	thod o	r any				• ¹	$\frac{dy}{dx}$	<u>;</u> = .	(1 teri	т со	orrect)		
alterna	ative metho	od shown in d	etail in th	e marking s	cheme	Э.					•2		·	6x - 9				
1											•3		$\frac{1}{2} = 0$					
•1	SS	know to		entiate							•4							
•2	pd	different	iate								•	3(<i>x</i> +	1)(x - 3)	3)			
•3	SS	set deriv	ative to	o zero								ī						
•4	pd	factorise									-			•5		•6	-	
•5	pd	solve for	x								•5			x = -1		x = 3 $y = -15$		
•6	pd	evaluate	y-coor	dinates							•6		J	y = 17		y = -15		
•7	SS	know to,	and ju	ustify tur	ning	poin	ts						1			1		
•8	ic	interpret	-	5	U	1								•7		•8		
											_	x		-1		3 .		
											•7							
												$\frac{dy}{dx}$	+	0	-	- 0	+	
											•8			max		min		

Notes	Notes cont	Alternatives
 The "=0" (shown at •³) <i>must</i> occur at least once before •⁵. •⁴ is only available as a consequence of solving dy/dx = 0. The nature table must reflect previous working from •⁴. For •⁴, accept (x + 1)(x - 3). The use of the 2nd derivative is an acceptable strategy. As shown in the Primary Method, (•⁵ and •⁶) and (•⁷ and •⁸) can be marked horizontally or vertically. •¹, •² and •³ are the only marks available to candidates who solve 3x² - 6x = 9. 	 8. If •⁷ is not awarded, •⁸ is only available as follow-through if there is clear evidence of where the signs at the •⁷ stage have been obtained. 9. For •⁷ and •⁸ The completed nature table is worth 2 marks if correct. If the labels "x" and/or " dy/dx " are missing from an otherwise correct table then award 1 mark. If the labels "x" and/or " dy/dx " are missing from a table where either •⁷ or •⁸ (vertically) would otherwise have been awarded, then award 0 marks. 	This would be fairly common: • ¹ $\sqrt{\frac{dy}{dx}} = \dots (1 \text{ term correct})$ • ² $\sqrt{3x^2 - 6x - 9}$ • ³ , • ⁴ $\sqrt{\sqrt{(3x - 9)(x + 1)} = 0}$ or $(3x + 3)(x - 3) = 0$ Min. requirements of a nature table $\frac{x}{dx} + \frac{1}{dx} - \frac{1}{dx} + \frac{1}{dx}$ Preferred nature table $\frac{x}{dx} + \frac{1}{dx} - \frac{1}{dx} + \frac{1}{dx}$ $\frac{dy}{dx} + \frac{1}{dx} - \frac{1}{dx} + \frac{1}{dx} + \frac{1}{dx} + \frac{1}{dx}$

qu		Mk	Code	cal	Source	SS	pd	ic	с	в	A		U1	U2	U3	2.02
2.02	a	3	A4	cn	09011	1		2	3				3			
	b	3	C1	cn		2	1		3				3			
		_				_					,	_		1		
Funct	tion	sf a	nd g are	given	by $f(x)$ =	= 3x	+1 a	nd g	(x)	$=x^{2}$	- 2	2.				
(a)	(i)	`	Find $p(x)$) wher	e n(r) -	fla	(r))									
<i>(u)</i>	(i)					- (-	,									
	(ii	~	Find $q(x)$	\ 1	$\langle \rangle$	()	(\cdot, \cdot)						2			

3

(b) Solve p'(x) = q'(x).

The primary me	ethod m.s is based on the following generic m.s.	Primary Method : Give 1 mark for each •
This generic ma	arking scheme may be used as an equivalence guide	
but only where	a candidate does not use the primary method or any	• ¹ $f(x^2 - 2)$ s/iby· ²
alternative met	hod shown in detail in the marking scheme.	• ¹ $f(x^2-2)$ s / i by • ² • ² $3(x^2-2)+1$ • ³ $(3x+1)^2-2$
• ¹ ss • ² ic • ³ ic • ⁴ ss • ⁵ pd • ⁶ pd	substitute for $g(x)$ in $f(x)$ complete sub. and complete for $q(x)$ simplify differentiate solve	• ³ $(3x+1)^2 - 2$ • ⁴ $3x^2 - 5$ $9x^2 + 6x - 1$ s/iby. ⁵ • ⁵ $6x$ $18x + 6$ or equiv. • ⁶ $x = -\frac{1}{2}$

No	ites	Common Errors	Alternative for \bullet^1 to \bullet^3 :
1.	In (a) 2 marks are available for finding either $f(g(x))$ or $g(f(x))$ and 1 mark for finding the other. In (b) candidates who start by equating $p(x)$ and $q(x)$ and then differentiate may earn \cdot^4 and \cdot^6 only.	1 $p(x) \text{ and } q(x) \text{ switched round:}$ $X \bullet^{1} \qquad p(x) = g(3x+1)$ $X \sqrt{\bullet^{2}} \qquad p(x) = (3x+1)^{2} - 2$ $X \sqrt{\bullet^{3}} \qquad q(x) = \dots = 3(x^{2} - 2) + 1$ 2 Candidates who find $f(f(x))$ and $g(g(x))$ can earn no marks in (a) but $X \sqrt{\bullet^{4}} \qquad 9x + 4 and x^{4} - 4x^{2} + 2$ $X \sqrt{\bullet^{5}} \qquad 9 = 4x^{3} - 8x$ $XX \bullet^{6} \qquad not available$ 3 $X \bullet^{4} \qquad 3x^{2} - 1 and 9x^{2} + 6x - 1$ $X \sqrt{\bullet^{5}} \qquad 6x and 18x + 6$ $X \sqrt{\bullet^{6}} \qquad x = -\frac{1}{2}$	•1 $f(g(x)) = 3 \times g(x) + 1$ •2 $f(g(x)) = 3(x^2 - 2) + 1$ $g(f(x)) = (f(x))^2 - 2$ •3 $g(f(x)) = (3x + 1)^2 - 2$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
The primary method m.s is based on the following generic m.s. This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme. • ¹ ss know and use $f(a) = 0 \Leftrightarrow a$ is a root • ² ic start to find quadratic factor • ³ ic complete quadratic factor • ⁴ pd factorise fully • ⁵ ss use log laws • ⁶ ss know to & convert to exponential form • ⁷ ic write cubic in standard form • ⁸ pd solve cubic • ⁹ ic interpret valid solution	Primary Method : Give 1 mark for each • • $f(1) = 1+8+11-20 = 0$ so $x = 1$ is a root See Note 1 • $(x-1)(x^2 \dots x)$ • $(x^2+9x+20)$ • $(x-1)(x+4)(x+5)$ Stated explicitly • $\log_2((x+3)(x^2+5x-4))$ s / iby • ⁶ • $(x+3)(x^2+5x-4) = 2^3$ • $x^3+8x^2+11x-20=0$ • $x = 1$ or $x = -4$ or $x = -5$ Stated explicitly here • $x = 1$ only

Notes	Common Errors	Options
1. For candidates evaluating the	1	Alternative for \bullet^1 to \bullet^2 .
function, some acknowledgement	• ⁵ X $\log_2 \frac{x^2 + 5x - 4}{x + 3} = 3$	1
of the resulting zero must be	x + 3	1 8 11 -20
shown in order to gain \bullet^1 .	• ⁶ X $\frac{x^2+5x-4}{x+3}=2^3$	• ¹ _1 _1
2. For candidates using synthetic		1 9
division (shown in Alt. box),	$\bullet^7 X \qquad x^2 - 3x - 28 = 0$	1 8 11 -20
some acknowledgement of the	$\bullet^8 X \qquad x = 7 \ or \ -4$	1 1 9 20
resulting zero must be shown in	• ${}^{9}X$ $x=7$ ONLY	• ² 1 9 20 0 rem. = 0
order to gain \bullet^2 .		so $x = 1$ is root
3. In option 2 the "zero" has been		see note 2
highlighted by underlining.		2
This can also appear in colour,		1 8 11 -20
bold or boxed.		•1 1
Some acknowledgement		1 9
of the resulting zero must be		1 8 11 -20
shown in order to gain \bullet^1 as		2 <u>1 1 9 20</u>
indicated in each option.		• ² 1 9 20 $\underline{0}$ so $x = 1$ is root
		see note 3

qu		Mk	Code	Cal	Source	ss	pd	ic	с	в	A		U1	U2	U3	2.04
2.04	a	1	A6	cn	08026		1		1				1			
	b c	5	G11 G15	cn nc		2	1	3	5		4			5		
(<i>a</i>)			-		(5, 10) lie		circ	le C ₁	wi	th			1	1	1	<i>y</i>
(<i>b</i>)	equation $(x + 1)^2 + (y - 2)^2 = 100$. (b) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q.													5	P(5, 10)	
(c)	Th	e radi	us of ea	ch of	Σ_3 , touch these circles C	cles i	is tw	ice tl		adiu	s of	circ	cle C ₁	ŀ	4	

The pr	imary me	thod m.s is based on the following generic m.s.	Prim	ary Method : Give 1 mark f	or each •
This g	eneric ma	rking scheme may be used as an equivalence g			
but onl	y where a	a candidate does not use the primary method or	• ¹	$(5+1)^2 + (10-2)^2 = 100$	
alterna	tive meth	od shown in detail in the marking scheme.	• ²	<i>centre</i> = $(-1, 2)$	
•1	pd	substitute	•3	Q = (-7, -6)	(no evidence requ.)
•2	ic	find centre		z ())	(no evidence requ.)
•3	SS	use mid-point result for Q	•4	$m_{rad} = \frac{8}{6}$	
•4	SS	know to, and find gradient of radi	• ⁵	$m_{tgt} = -\frac{3}{4}$	s / i by $ullet^6$
•5	ic	find gradient of tangent	6	° 4	
•6	ic	state equation of tangent	•6	$y - (-6) = -\frac{3}{4}(x - (-7))$	
•7	ic	state radius	•7	radius = 20	s / i by \cdot^9 or \cdot^{10}
•8	SS	know how to find centre	• ⁸	centre = (5, 10)	s / i by • ⁹
•9	ic	state equation of one circle	•9	$(x-5)^2 + (y-10)^2 = 400$	
• ¹⁰	ic	state equation of the other circle	• ¹⁰	$(x+19)^2 + (y+22)^2 = 400$	

Notes	Notes cont	Alternative for \cdot^8 , \cdot^9 and \cdot^{10}
 In (a), candidates may choose to show that distance CP = the radius. Markers should note that evidence for •², which is in (b), may appear in (a). The minimum requirement for •¹ is as shown in the Primary Method. •⁶ is only available as a consequence of attempting to find a perp. gradient. For candidates who choose a Q <i>ex nihilo</i>, •⁶ is only available if the chosen Q lies in the 3rd quadrant. 	 5. •⁹ and/or •¹⁰ are only available as follow-through if a centre with numerical coordinates has been stated explicitly. 6. •¹⁰ is not available as a follow-through; it must be correct. 	

qu Mk Code Cal Source ss pd ic C B	A U1 U2 U3 2.05
2.05 a 1 T4 cn 09026 1 1 1 b 5 T6 cr 1 3 1 5	
c 6 C17,23 cr 1 3 2 6	6
 The graphs of y = f(x) and y = g(x) are shown in the diag f(x) = -4 cos(2x) + 3 and g(x) is of the form g(x) = m cos(a) Write down the values of m and n. (b) Find, correct to 1 decimal place, the coordinates of the points of intersection of the two graphs in the interval shows (c) Calculate the shaded area. 	nx).
The primary method m.s is based on the following generic m.s.	Primary Method : Give 1 mark for each •
This generic marking scheme may be used as an equivalence guide	• ¹ $m=3$ and $n=2$
but only where a candidate does not use the primary method or any	$\bullet^2 3\cos 2x = -4\cos 2x + 3$
alternative method shown in detail in the marking scheme.	• ³ $\cos 2x = \frac{3}{7}$
• ¹ ic interprets graph	• $\cos 2x = \frac{1}{7}$
\bullet^2 ss knows how to find intersection	• $x = 0.6$
\bullet^3 pd starts to solve	• ⁵ $x = 2.6$
• ⁴ pd finds x-coordinate in the 1st quadrant	• ⁶ $y = 1.3, 1.3$
• ⁵ pd finds x-coordinate in the 2nd quadrant	• ⁷ $\int (-4\cos 2x + 3 - 3\cos 2x) dx$
• ⁶ pd finds y-coordinates	• $\int (-4\cos 2x + 3 - 3\cos 2x) dx$
\bullet^7 ss knows how to find area	• ⁸ (^{2.6}
• ⁸ ic states limits	J _{0.6}
• ⁹ pd integrate	• ⁹ "- 7 sin 2x"
• ¹⁰ pd integrate	$\cdot^{10} 3x - \frac{7}{2}\sin 2x$
• ¹¹ ic substitute limits	• ¹¹ $(3 \times 2.6 - \frac{7}{2}\sin 5.2) - (3 \times 0.6 - \frac{7}{2}\sin 1.2)$
• ¹² pd evaluate area	• ¹² 12.4
	_ 12.4
Continued on next page	Continued on next page

Question 2.05 cont.

Notes 1	Common Errors	Alternative for • ³ , • ⁴ , • ⁵
 Answers which are not rounded should be treated as "bad form" and not penalised. 	 For candidates who work in degrees throughout this question, the following marks are available: 	Option 1
 If n = 1 from (a), then in (b) the follow-through solution is 0.697 and 5.586. •⁵ is not available in (b) and •⁸ is not available in (c). If n = 3 from (a), then in (b) only •² is available. At •⁵ : x = 2.5 can only come from calculating π - 0.6. For this to be accepted, candidates must state that it comes from symmetry of the graph. 	In (b) In (c) $\begin{array}{c c} \hline 1 & (b) & In (c) \\ \hline 2 & \sqrt{10} & \sqrt{10} & \sqrt{10} \\ \hline 3 & \sqrt{10} & \sqrt{10} & \sqrt{10} \\ \hline 4 & X & -9 & X \\ \hline 5 & X\sqrt{10} & \sqrt{10} & X\sqrt{10} \\ \hline 6 & \sqrt{11} & X \\ \hline 6 & \sqrt{11} & 12 & X \\ \hline 2. In (c) candidates who deal with f(x) and g(x) separately and add can only earn at most$	• ³ $\cos^2 x = \frac{10}{14}$ • ⁴ $\cos x = \sqrt{\frac{10}{14}}, \cos x = -\sqrt{\frac{10}{14}}$ • ⁵ $x = 0.6$ $x = 2.6$ Option 2 • ³ $\cos^2 x = \frac{10}{14}$ • ⁴ $\cos x = \sqrt{\frac{10}{14}}$ and $x = 0.6$ • ⁵ $\cos x = -\sqrt{\frac{10}{14}}$ and $x = 2.6$
 5. For •⁶ Acceptable values of <i>y</i> will lie in the range 1.1 to 1.6 (due to early rounding !!) 6. Values of <i>x</i> used for the limits must 	 ⁸ correct limits ⁹ for correct integral of f(x) ¹⁰ for correct integral of g(x) ¹¹ for correct substitution. 	Option 3
 lie between 0 and π, i.e 0 < limits < π, else •⁸ is lost. 7. •⁸, •¹¹ and •¹² are not available to 		• ³ $\sin^2 x = \frac{4}{14}$ • ⁴ $\sin x = \sqrt{\frac{4}{14}}$ • ⁵ $x = 0.6, x = 2.6$
 candidates who use - 3 and 7 as the limits. 8. Candidates must deal appropriately with any extraneous negative signs which may appear before •¹² can be awarded. 		Alternative for \cdot^9 , \cdot^{10} $\cdot^9 -4\sin 2x - 3\sin 2x$ $\cdot^{10} 3x - \frac{4}{2}\sin 2x - \frac{3}{2}\sin 2x$
It is considered inappropriate to write = -12.4 = 12.4		

qu		Mk	Code	cal	Source	SS	pd	ic	с	в	A	U1	U2	U3	2.06
2.06	а	2	A30,34	cr	08532		1	1		2				2	
	b	3	A30,34	cr		1	1	1			3			3	

The size of the human population, N, can be modelled using the equation $N = N_0 e^{rt}$ where N_0 is the population

in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.

- (*a*) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020 ?
- (*b*) In 2006 the population of Scotland was approximately 5·1 million, with an annual rate of increase of 0·43%. Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size ?

The primary method m.s is based on the following generic m.s. This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

• ¹	ic	substitute into equation
•2	pd	evaluate exponential expression
•3	ic	interpret info and substitute
•4	SS	convert expo. equ. to log. equ.
•5	pd	process

Primary Method: Give 1 mark for each.

- •1 $61e^{0.016 \times 14}$
- •² 76 million or equiv.
- •³ $10.2 = 5.1e^{0.0043t}$
- •⁴ $0.0043t = \ln 2$
- t = 161.2 years

 For •², do not accept 76. Accept any answer which rounds to 76 million and was obtained from legitimate sources.
 •⁵ is for a rounded up answer or implying a rounded-up answer. Acceptable answers would include 162 and 161.2 but not 161.

3. Cave

Notes

Beware of poor imitations which yield results similar/same to that given in the paradigm, e.g. compound percentage

or recurrence relations.

These can receive no credit but see Common Error 2 for exception.

Common Errors

Candi	dates who misread the
rate of	fincrease:
Х	$61e^{1.6 \times 14}$
X	3.26×10^{11} million
X	$10.2 = 5.1e^{0.43t}$
X	$0.43t = \ln 2$
X	t = 1.612
X	61×1.016^{14}
X	76 million
X	$10.2 = 5.1 \times 1.0043^{t}$
X	$t \ln 1.0043 = \ln 2$
X	t = 162
i.e. awa	ard 2 marks
	rate of X $X \lor$ $X \lor$ $X \lor$ X X X $X \lor$ $X \lor$ $X \lor$

Options

1 •1 $6100000e^{0.016 \times 14}$ •2 76000000 2 •1 (61 million) $\times e^{0.016 \times 14}$ •2 76 million 3 •1 $6100000e^{0.224}$ •2 76 million 4 (61 million) $\times e^{0.224}$ •1 •2 7600000

2

3

qu		Mk	Code	cal	Source	SS	pd	ic	с	в	A		U1	U2	U3	2.07
2.07	a	6	G29,26	cn	09031	1	2	3		6					6	
	b	4	G21,30	cr		1	1	2		2	2				4	
Vect	ors	p,q a	ind <i>r</i> are	repres	ented on	the	diagı	ram s	shov	vn v	vher	e				A B
angle	e AI	DC =	30°. It is	also g	iven that	t p =	= 4 a	nd <i>q</i>	=2	3.						«
(<i>a</i>)	Eva	luate	p.(q+r)	and	r.(p - q).										6	T I
<i>(b)</i>	Finc	d q +	<i>r</i> and	<i>p</i> –	q .										4	
																-

The primary method m.s is based on the following generic m.s.	Primary Method : Give 1 mark for each •
This generic marking scheme may be used as an equivalence guide	• $p.q + p.r$ s / i by (• ² and • ⁴)
but only where a candidate does not use the primary method or any	• ² $4 \times 3\cos 30^{\circ}$ s / i by • ³
alternative method shown in detail in the marking scheme.	\cdot^{3} $6\sqrt{3}$ (10.4)
• ¹ ss use distributive law	• $p.r = 0$ explicitly stated
\bullet^2 ic interpret scalar product	
• ³ pd processing scalar product	$\cdot^5 - \mathbf{r} \times 3\cos 120^\circ$
• ⁴ ic interpret perpendicularity	• ⁶ $r = \frac{3}{2} and \dots \frac{9}{4}$
• ⁵ ic interpret scalar product	• ⁷ $q + r \equiv$ from D to the projection of A onto DC
• ⁶ pd complete processing	• ⁸ $ q+r =\frac{3\sqrt{3}}{2}$
• ⁷ ic interpret vectors on a 2-D diagram	• $ q+r = \frac{1}{2}$
• ⁸ pd evaluate magnitude of vector sum	•9 $p-q \equiv \overline{AC}$
• ⁹ ic interpret vectors on a 2-D diagram	• ¹⁰ $\mid \boldsymbol{p} - \boldsymbol{q} \models \sqrt{\left(4 - \frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2}$ (2.05)
• ¹⁰ pd evaluate magnitude of vector difference	• ¹⁰ $\mid \boldsymbol{p} - \boldsymbol{q} \models \sqrt{\left(4 - \frac{3\sqrt{3}}{2}\right)} + \left(\frac{3}{2}\right)$ (2.05)

Alternatives 1

Notes	Alternatives 1	Alternatives 2
1. $p.(q+r) = pq + pr$ gains no	1 For \bullet^7 and \bullet^8 :	3
marks unless the "vectors"	• ⁷ $\sqrt{p.(q+r)} = p q+r \cos 0$	For \bullet^7 , \bullet^8 , \bullet^9 , \bullet^{10} :
are treated correctly further on.	$6\sqrt{3} = 4 q + r \times 1$	Set up a coord system with origin at D
In this case treat this as bad form.	• ⁸ $\sqrt{ q+r } = \frac{6\sqrt{3}}{4} = \frac{3\sqrt{3}}{2}$	• ⁷ $C = (4,0), A = \left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right), B = \left(4, \frac{3}{2}\right)$
2. The evidence for \bullet^7 and \bullet^9 will	•* $\sqrt{ q+r } = \frac{3\sqrt{2}}{4} = \frac{3\sqrt{2}}{2}$	(/ , -/
likely appear in a diagram with		$\mathbf{a}^{8} \mathbf{p} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \mathbf{a} = \begin{vmatrix} \frac{3\sqrt{3}}{2} \\ \frac{3\sqrt{3}}{2} \end{vmatrix} \mathbf{r} = \begin{pmatrix} 0 \\ 0 \end{vmatrix}$
the vectors $q + r$ and $p - q$		• ⁸ $\boldsymbol{p} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \boldsymbol{q} = \begin{pmatrix} \frac{3\sqrt{3}}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}, \boldsymbol{r} = \begin{pmatrix} 0 \\ -\frac{3}{2} \end{pmatrix}$
clearly marked.	2 For \bullet^9 , \bullet^{10} :	
	Using right-angled Δ ABC	• ⁹ $\boldsymbol{q} + \boldsymbol{r} = \begin{pmatrix} \frac{3\sqrt{3}}{2} \\ 0 \end{pmatrix}$ and $ \boldsymbol{q} + \boldsymbol{r} = 2.60$
Common Errors	•9 $\overrightarrow{AC} = p - q$,	
1 For \bullet^1 to \bullet^4	and $ \overrightarrow{AB} = 4 - \frac{3\sqrt{3}}{2}, \overrightarrow{BC} = \frac{3}{2}$	$\begin{pmatrix} 4 & 3\sqrt{3} \end{pmatrix}$
p.(q+r) = p.q + p.r	~	• ¹⁰ $p - q = \begin{pmatrix} 4 - \frac{3\sqrt{3}}{2} \\ -\frac{3}{2} \end{pmatrix}$ and $ p - q = 2.05$
$= 4 \times 3 + 4 \times \frac{3}{2}$	and $ACB = 43.06^{\circ}$	$\left(\begin{array}{c} -\frac{3}{2} \end{array}\right)$
= 18	• ¹⁰ use $r.(p-q) = \frac{9}{4}$	
can only be awarded \bullet^1 .	to get $ \mathbf{p}-\mathbf{q} = 2.05$	

Marks : May 2009

Centre	e/groi	up		 				 		 			
cand r	no												totals
1				 		01-		 			01-		
21a	1			 		21a	1	 		 	21a	1	
21b	3			 		21b	3				21b	3	
21c	4					21c	4				21c	4	
22a	4					22a	4			11	22a	4	
22b	4			 		22b	4	 		 	22b	4	
23a	2					23a	2				23a	2	
23b	3					23b	3				23b	3	
24a	3					24a	3				24a	3	
24b	2					24b	2	 		 	24b	2	
24c	4					24c	4				24c	4	
1	8					1	8				1	8	
2a	3					2a	3				2a	3	
2b	3			 		2b	3			 	2b	3	
3a	4					3a	4				3a	4	
3b	5					3b	5				3b	5	
4a	1					4a	1				4a	1	
4b	5	├├		 		4b	5	 		 	4b	5	
4c	4			 		4c	4	 		 	4 C	4	
5a	1		-			5a	1				5a	1	
5b	5					5b	5				5b	5	
5c				 		5c					5c	6	
	6	łł		 			6	 					
6a	2			 		6a	2	 			6a	2	
CL I	з					6b	3				6b	3	
6b						7a	6				7a	6	
	6					/a							
7a	6										7b		
7a 7b	4 totals	up				7b	4 totals				7b	4	
7a 7b Centre cand.r	4 totals e/gro	up				7b	4 totals					4	totals
7a 7b	4 totals e/gro	up				7b	4				21a		totals
7a 7b Centre cand.r	4 totals e/groo no	up				7b	4 totals					4	totals
7a 7b Centre cand.r 21a 21b	4 totals e/grou no 1 3	up				7b 21a 21b	4 totals 1 3				21a 21b	4	totals
7a 7b Centre cand.r 21a 21b 21c	4 totals e/grou no 1 3 4	up				7b 21a 21b 21c	4 totals 1 3 4				21a 21b 21c	4	totals
7a 7b Centre cand.r 21a 21b 21c 22a	4 totals e/grou no 1 3 4 4					7b 21a 21b 21c 22a	4 totals 1 3 4 4				21a 21b 21c 22a	4 1 3 4 4	totals
7a 7b Centre cand.r 21a 21c 22a 22b	4 totals e/grou no 1 3 4 4 4					7b 21a 21b 21c 22a 22b	4 totals 1 3 4 4 4				21a 21b 21c 22a 22b	4 1 3 4 4 4	totals
7a 7b Centre cand.r 21a 21b 21c 22a	4 totals e/grou no 1 3 4 4					7b 21a 21b 21c 22a 22b 23a	4 totals 1 3 4 4				21a 21b 21c 22a 22b 23a	4 1 3 4 4	totals
7a 7b Centre cand.r 21a 21c 22a 22b	4 totals e/grou no 1 3 4 4 4					7b 21a 21b 21c 22a 22b	4 totals 1 3 4 4 4				21a 21b 21c 22a 22b	4 1 3 4 4 4	totals
7a 7b 7b Centre cand.t 21a 21b 21c 22a 22b 23a 23b	4 totals e/grou 1 3 4 4 4 4 2 3					7b 21a 21b 21c 22a 22b 23a 23b	4 totals 1 3 4 4 4 2 3				21a 21b 21c 22a 22b 23a	4 1 3 4 4 4 4 2	totals
7a 7b 7b Centre cand.t 21a 21b 21c 22a 22b 23a 23b 24a	4 totals e/grou 1 3 4 4 4 2 3 3					7b 21a 21b 21c 22a 22b 23a 23b 24a	4 totals 1 3 4 4 2 3 3				21a 21b 21c 22a 22b 23a 23b 24a	4 1 3 4 4 4 2 3 3 3	totals
7a 7b 7b Centre cand.t 21a 21b 21c 22a 22b 23a 23b 24a 24b	4 totals e/grou 1 3 4 4 4 2 3 3 2					7b 21a 21b 21c 22a 22b 23a 23b 23b 24a 24b	4 totals 1 3 4 4 2 3 3 3 2				21a 21b 21c 22a 22b 23a 23b 24a 24a	4 1 3 4 4 4 2 3 3 2	totals
7a 7b 7b Centre cand.r 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24a	4 totals 1 3 4 4 4 2 3 3 2 2 4				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c	4 1 3 4 4 2 3 3 2 4	totals
7a 7b 7b Centre cand.t 21a 21b 21c 22a 22b 23a 23b 24a 24b	4 totals e/grou 1 3 4 4 4 2 3 3 2 4 8					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 24c 1	4 totals 1 3 4 4 2 3 3 3 2				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1	4 1 3 4 4 4 2 3 3 2 4 8	totals
7a 7b 7b Centre cand.r 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24a	4 totals 1 3 4 4 4 2 3 3 2 2 4				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c	4 1 3 4 4 2 3 3 2 4	totals
7a 7b 7b cand.r 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 2a	4 totals no 1 3 4 4 4 4 2 3 3 2 4 8 3 3					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 2a	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 8 3 3				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 2a	4 1 3 4 4 4 2 3 3 2 4 8	totals
7a 7b 7b Centre cand.1 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 2a 2b	4 totals e/grou 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 3					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b	4 totals 1 3 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 3				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 2a 2b	4 1 3 4 4 4 2 3 3 2 4 8 8 3 3 3	totals
7a 7b 7b Centre cand.1 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 3 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24a 24b 24c 1 2a 2b 3a	4 totals 1 3 4 4 4 4 2 3 3 3 2 4 8 3 3 3 3 3 4				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a	4 1 3 4 4 2 3 3 2 4 8 8 3 3 3 4	
7a 7b 7b Centre cand.r 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 4 5 5					7b 21a 21b 21c 22a 22b 23a 23b 24b 24c 1 24c 1 24c 1 24c 1 24c 3a 3b	4 totals 1 3 4 4 4 2 3 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24c 1 24c 3a 3b	4 1 3 4 4 4 2 3 3 2 4 4 8 3 3 3 3 4 5	
7a 7b 7b Centre cand.t 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 3 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 24b 3a 3b 3b	4 totals 1 3 4 4 4 4 2 3 3 3 2 4 8 3 3 3 3 3 4				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 3b	4 1 3 4 4 2 3 3 2 4 8 8 3 3 3 4	
7a 7b 7b Centre cand.r 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b	4 totals e/grou 1 3 4 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 4 5 5					7b 21a 21b 21c 22a 22b 23a 23b 24b 24c 1 24c 1 24c 1 24c 1 24c 3a 3b	4 totals 1 3 4 4 4 2 3 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24c 1 24c 3a 3b	4 1 3 4 4 2 3 3 2 4 4 8 3 3 3 3 4 5	
7a 7b 7b 21a 21a 21c 22a 22b 23a 23b 24a 24b 24c 1 2a 2b 3a 3b 4a 4b	4 totals no 1 3 4 4 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 2 4 5 1 5 5					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 24b 24c 3 1 24b 34b 34b 34b 34b	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 3 3 2 4 5 1 5 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 4a 4b	4 1 3 4 4 2 3 3 2 4 3 3 2 4 5 5 1	totals
7a 7b 7b 2cand.r 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 1 5 4 4 4 4 4 4 4 4 4 4 4 4 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24c 1 24c 3a 2b 3a 3b 3a 3b 4a 4b	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 5 5 1 5 5 1 5 4				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 3a 3b 4a 4b	4 1 3 4 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 5 1 5 4	totals
7a 7b 7b 2cand.r 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 5a	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 8 3 3 2 4 5 1 5 4 1 5 4 1 5 4 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24b 24c 1 24b 24c 1 24b 24c 3a 3b 3a 3b 4a 4b 4c 5a	4 totals 1 3 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 1 5 4 1 5 4 1 1 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24b 24c 1 24b 3a 3b 3b 4a 4b 4c 5a	4 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 5 1 5 4 1	totals
7a 7b 7b 21a 21a 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 5a 5b	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 1 5 4 4 4 4 4 4 4 4 4 4 4 4 4					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24a 24b 24c 1 2a 2b 3a 3b 3a 3b 4a 3b 4a 4b 4c 5a 5b	4 totals 1 3 4 4 4 2 3 3 3 2 4 8 3 3 2 4 8 3 3 3 3 4 5 5 1 5 5 4 1 5 5 4 1 5 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 3a 3b 4a 4b 4c 5a 5b	4 1 3 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 1 5 5 1 5 4 1 5 5	
7a 7b 7b 2cand.r 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 5a	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 8 3 3 2 4 5 1 5 4 1 5 4 1 5 4 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24b 24c 1 24b 24c 1 24b 24c 3a 3b 3a 3b 4a 4b 4c 5a	4 totals 1 3 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 1 5 4 1 5 4 1 1 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24c 1 24c 3a 2b 3a 3b 4a 3b 4a 4b 4c 5a 5b 5c	4 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 5 1 5 4 1	
7a 7b 7b 27b 21a 21b 21c 22a 22b 23a 24a 24b 24a 24b 24a 24b 3a 3b 4a 4b 4c 5a 5b 5c	4 totals e/grou no 1 3 4 4 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 1 5 4 1 5 4 1 5 4 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24a 24b 24c 1 2a 2b 3a 3b 3a 3b 4a 3b 4a 4b 4c 5a 5b	4 totals 1 3 4 4 4 2 3 3 3 2 4 8 3 3 2 4 8 3 3 3 3 4 5 5 1 5 5 4 1 5 5 4 1 5 5				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 3a 3b 4a 4b 4c 5a 5b	4 1 3 4 4 4 2 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 1 5 5 1 5 4 1 5 5	
7a 7b 7b 27b 21a 21b 21c 22a 22b 23a 24b 24b 24b 24b 24b 3a 3b 4a 4b 5c 5c 6a	4 totals e/grou no 1 3 4 4 4 4 4 2 3 3 2 4 8 3 2 4 8 3 3 2 4 5 1 5 4 1 5 6 2 2 4 1 5 6 6 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1					7b 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 24b 3a 3b 4a 4b 4c 5b 5c 6a	4 totals 1 3 4 4 4 2 3 3 3 2 4 8 3 3 2 4 8 3 3 3 4 5 5 1 5 4 1 5 5 4 1 5 5 6 6 2 2				21a 21b 21c 22a 23a 23b 24a 24b 24c 1 24c 1 2a 2b 3a 3b 4a 3b 4a 4b 4c 5a 5b 5c 6a	4 1 3 4 4 2 3 3 2 4 3 3 2 4 3 3 3 2 4 5 5 1 5 4 1 5 5 4 1 5 5 6 6 2	
7a 7b 7b 2cand.r 21a 21b 21c 22a 23a 23b 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c 5a 5b 5c 6a 6b	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 2 4 8 3 2 4 4 5 1 5 1 5 4 1 5 6 2 3 3 4 4 4 4 4 4 4 5 5 1 1 5 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7					7b 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c 5a 5b 5c 6a 6b	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 1 5 5 1 5 5 1 5 5 6 6 2 2 3 3				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24b 24c 1 24b 24c 3a 2b 3a 3b 4a 4b 4c 55a 55c 5c 6a 6b	4 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 2 4 8 3 2 4 5 1 5 4 1 5 6 2 3 3 4 4 3 3 3 4 4 4 4 5 5 6 6 6 6 6 6 6 7 6 6 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	
7a 7b 7b 2cand.r 21a 21b 21c 22a 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c 5a 5b 5c 6a 6b 7a	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 4 8 3 2 4 8 3 2 4 8 3 2 4 4 5 1 5 4 1 5 6 2 3 6 6 6					7b 21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24c 3a 24b 24c 3a 24b 24c 3a 24b 24c 3a 24b 24c 3a 24b 24c 3a 25b 3a 3b 3b 4a 3b 4a 3b 55 56 66 66 7a	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 4 8 3 3 2 2 4 1 5 5 1 1 5 5 6 6 2 2 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24b 24c 1 24b 24c 1 24b 24c 3a 3b 4a 3b 4a 4b 4c 55a 55c 6a 6b 7a	4 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 2 4 8 3 3 4 5 1 5 4 1 5 6 2 3 6 6	
7a 7b 7b 2cand.r 21a 21b 21c 22a 23a 23b 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c 5a 5b 5c 6a 6b	4 totals e/grou no 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 2 4 8 3 2 4 4 5 1 5 1 5 4 1 5 6 2 3 3 4 4 4 4 4 4 4 5 5 1 1 5 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7					7b 21a 21b 21c 22a 22b 23a 24a 24b 24c 1 2a 2b 3a 3b 4a 4b 4c 5a 5b 5c 6a 6b	4 totals 1 3 4 4 4 2 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 8 3 3 2 2 4 1 5 5 1 5 5 1 5 5 6 6 2 2 3 3				21a 21b 21c 22a 22b 23a 23b 24a 24b 24c 1 24c 1 24b 24c 1 24b 24c 3a 2b 3a 3b 4a 4b 4c 55a 55c 5c 6a 6b	4 1 3 4 4 4 2 3 3 2 4 8 3 2 4 8 3 2 4 8 3 2 4 5 1 5 4 1 5 6 2 3 3 4 1 5 6 2 3 3 4 4 5 5 6 6 6 2 3 3 4 5 5 6 6 6 6 6 6 6 6 6 7 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	

the end