X100/301

NATIONAL
QUALIFICATIONS 2009

THURSDAY, 21 MAY 9.00 AM - 10.30 AM

MATHEMATICS HIGHER

Paper 1
(Non-calculator)

Read carefully

Calculators may NOT be used in this paper.

Section A - Questions 1-20 (40 marks)

Instructions for completion of Section A are given on page two.
For this section of the examination you must use an HB pencil.

Section B (30 marks)

1 Full credit will be given only where the solution contains appropriate working.
2 Answers obtained by readings from scale drawings will not receive any credit.

Read carefully

1 Check that the answer sheet provided is for Mathematics Higher (Section A).
2 For this section of the examination you must use an HB pencil and, where necessary, an eraser.
3 Check that the answer sheet you have been given has your name, date of birth, SCN (Scottish Candidate Number) and Centre Name printed on it.
Do not change any of these details.
4 If any of this information is wrong, tell the Invigilator immediately.
5 If this information is correct, print your name and seat number in the boxes provided.
6 The answer to each question is either A, B, C or D. Decide what your answer is, then, using your pencil, put a horizontal line in the space provided (see sample question below).
7 There is only one correct answer to each question.
8 Rough working should not be done on your answer sheet.
9 At the end of the exam, put the answer sheet for Section A inside the front cover of your answer book.

Sample Question

A curve has equation $y=x^{3}-4 x$.
What is the gradient at the point where $x=2$?
A 8
B 1
C 0
D -4

The correct answer is A-8. The answer A has been clearly marked in pencil with a horizontal line (see below).

Changing an answer

If you decide to change your answer, carefully erase your first answer and, using your pencil, fill in the answer you want. The answer below has been changed to \mathbf{D}.

$$
\begin{array}{cccc}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\square & \square & \square &
\end{array}
$$

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

ALL questions should be attempted.

1. A sequence is defined by $u_{n+1}=3 u_{n}+4$ with $u_{1}=2$.

What is the value of u_{3} ?
A 34
B 21
C 18
D 13
2. A circle has equation $x^{2}+y^{2}+8 x+6 y-75=0$.

What is the radius of this circle?
A 5
B 10
C $\sqrt{75}$
D $\sqrt{175}$
3. Triangle $P Q R$ has vertices at $P(-3,-2), Q(-1,4)$ and $R(3,6)$. PS is a median. What is the gradient of PS?
A $\quad-2$
B $-\frac{7}{4}$
C 1
D $\frac{7}{4}$
4. A curve has equation $y=5 x^{3}-12 x$.

What is the gradient of the tangent at the point $(1,-7)$?
A $\quad-7$
B -5
C 3
D 5
5. Here are two statements about the points $S(2,3)$ and $T(5,-1)$:
(1) The length of ST = 5 units;
(2) The gradient of $\mathrm{ST}=\frac{4}{3}$.

Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct.
C Only statement (2) is correct.
D Both statements are correct.
6. A sequence is generated by the recurrence relation $u_{n+1}=0 \cdot 7 u_{n}+10$.

What is the limit of this sequence as $n \rightarrow \infty$?
A $\frac{100}{3}$
B $\frac{100}{7}$
C $\quad \frac{17}{100}$
D $\frac{3}{10}$
7. If the exact value of $\cos x$ is $\frac{1}{\sqrt{5}}$, find the exact value of $\cos 2 x$.

A $-\frac{3}{5}$
B $-\frac{2}{\sqrt{5}}$
C $\frac{2}{\sqrt{5}}$
D $\frac{3}{5}$
8. What is the derivative of $\frac{1}{4 x^{3}}, x \neq 0$?

A $\frac{1}{12 x^{2}}$
B $-\frac{1}{12 x^{2}}$
C $\frac{4}{x^{4}}$
D $-\frac{3}{4 x^{4}}$
9. The line with equation $y=2 x$ intersects the circle with equation $x^{2}+y^{2}=5$ at the points J and K.
What are the x-coordinates of J and K ?
A $x_{\mathrm{J}}=1, x_{\mathrm{K}}=-1$
B $x_{\mathrm{J}}=2, x_{\mathrm{K}}=-2$
C $x_{\mathrm{J}}=1, x_{\mathrm{K}}=-2$
D $x_{\mathrm{J}}=-1, x_{\mathrm{K}}=2$
10. Which of the following graphs has equation $y=\log _{5}(x-2)$?

A

B

C

D

11. How many solutions does the equation

$$
(4 \sin x-\sqrt{5})(\sin x+1)=0
$$

have in the interval $0 \leq x<2 \pi$?
A 4
B 3
C 2
D 1
12. A function f is given by $f(x)=2 x^{2}-x-9$.

Which of the following describes the nature of the roots of $f(x)=0$?
A No real roots
B Equal roots
C Real distinct roots
D Rational distinct roots
13. k and a are given by

$$
\begin{aligned}
& k \sin a^{\circ}=1 \\
& k \cos a^{\circ}=\sqrt{3}
\end{aligned}
$$

where $k>0$ and $0 \leq a<90$.
What are the values of k and a ?

	k	a
A	2	60
B	2	30
C	$\sqrt{10}$	60
D	$\sqrt{10}$	30

14. If $f(x)=2 \sin \left(3 x-\frac{\pi}{2}\right)+5$, what is the range of values of $f(x)$?

A $-1 \leq f(x) \leq 11$
B $\quad 2 \leq f(x) \leq 8$
C $\quad 3 \leq f(x) \leq 7$
D $-3 \leq f(x) \leq 7$
15. The line GH makes an angle of $\frac{\pi}{6}$ radians with the y-axis, as shown in the diagram. What is the gradient of GH?

A $\sqrt{3}$
B $\quad \frac{1}{2}$
C $\frac{1}{\sqrt{2}}$
D $\frac{\sqrt{3}}{2}$
16. The graph of $y=4 x^{3}-9 x^{2}$ is shown in the diagram.

Which of the following gives the area of the shaded section?

A $\quad\left[x^{4}-3 x^{3}\right]_{-5}^{0}$
B $\quad-\left[x^{4}-3 x^{3}\right]_{0}^{1}$
C $\left[12 x^{2}-18 x\right]_{-5}^{0}$
D $-\left[12 x^{2}-18 x\right]_{0}^{1}$
17. The vector \boldsymbol{u} has components $\left(\begin{array}{r}-3 \\ 0 \\ 4\end{array}\right)$.

Which of the following is a unit vector parallel to \boldsymbol{u} ?
A $-\frac{3}{5} \boldsymbol{i}+\frac{4}{5} \boldsymbol{k}$
B $-3 \boldsymbol{i}+4 \boldsymbol{k}$
C $-\frac{3}{\sqrt{7}} \boldsymbol{i}+\frac{4}{\sqrt{7}} \boldsymbol{k}$
D $-\frac{1}{3} \boldsymbol{i}+\frac{1}{4} \boldsymbol{k}$
18. Given that $f(x)=\left(4-3 x^{2}\right)^{-\frac{1}{2}}$ on a suitable domain, find $f^{\prime}(x)$.

A $-3 x\left(4-3 x^{2}\right)^{-\frac{1}{2}}$
B $-\frac{1}{2}(4-6 x)^{-\frac{3}{2}}$
C $2\left(4-3 x^{3}\right)^{\frac{1}{2}}$
D $3 x\left(4-3 x^{2}\right)^{-\frac{3}{2}}$
19. For what values of x is $6+x-x^{2}<0$?

A $x>3$ only
B $x<-2$ only
C $x<-2, x>3$
D $-3<x<2$
20. $A=2 \pi r^{2}+6 \pi r$.

What is the rate of change of A with respect to r when $r=2$?
A 10π
B 12π
C 14π
D 20π

SECTION B

ALL questions should be attempted.

21. Triangle $P Q R$ has vertex P on the x-axis, as shown in the diagram.
Q and R are the points $(4,6)$ and $(8,-2)$ respectively.
The equation of PQ is $6 x-7 y+18=0$.
(a) State the coordinates of P .
(b) Find the equation of the altitude of
 the triangle from P.
(c) The altitude from P meets the line QR at T . Find the coordinates of T .
22. D, E and F have coordinates $(10,-8,-15),(1,-2,-3)$ and $(-2,0,1)$ respectively.
(a) (i) Show that D, E and F are collinear.
(ii) Find the ratio in which E divides DF.
(b) G has coordinates $(k, 1,0)$.

Given that DE is perpendicular to GE, find the value of k.
23. The diagram shows a sketch of the function $y=f(x)$.
(a) Copy the diagram and on it sketch the graph of $y=f(2 x)$.
(b) On a separate diagram sketch the graph of $y=1-f(2 x)$.

24. (a) Using the fact that $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$, find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
(b) Show that $\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})=2 \sin \mathrm{~A} \cos \mathrm{~B}$.
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
(ii) Hence or otherwise find the exact value of $\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right)$.

X100/302

NATIONAL QUALIFICATIONS 2009
THURSDAY, 21 MAY 10.50 AM - 12.00 NOON
MATHEMATICS HIGHER
Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. Find the coordinates of the turning points of the curve with equation $y=x^{3}-3 x^{2}-9 x+12$ and determine their nature.
2. Functions f and g are given by $f(x)=3 x+1$ and $g(x)=x^{2}-2$.
(a) (i) Find $p(x)$ where $p(x)=f(g(x))$.
(ii) Find $q(x)$ where $q(x)=g(f(x))$.
(b) Solve $p^{\prime}(x)=q^{\prime}(x)$.
3. (a) (i) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(ii) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully.
(b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$.
4. (a) Show that the point $\mathrm{P}(5,10)$ lies on circle C_{1} with equation $(x+1)^{2}+(y-2)^{2}=100$.
(b) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q .

(c) Two circles, C_{2} and C_{3}, touch circle C_{1} at Q .

The radius of each of these circles is twice the radius of circle C_{1}.
Find the equations of circles C_{2} and C_{3}.
5. The graphs of $y=f(x)$ and $y=g(x)$ are shown in the diagram.
$f(x)=-4 \cos (2 x)+3$ and $g(x)$ is of the form $g(x)=m \cos (n x)$.

(a) Write down the values of m and n.
(b) Find, correct to one decimal place, the coordinates of the points of intersection of the two graphs in the interval $0 \leq x \leq \pi$.
(c) Calculate the shaded area.
6. The size of the human population, N, can be modelled using the equation $N=N_{0} e^{r t}$ where N_{0} is the population in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.
(a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of $1 \cdot 6 \%$. Assuming this growth rate remains constant, what would be the population in 2020?
(b) In 2006 the population of Scotland was approximately $5 \cdot 1$ million, with an annual rate of increase of 0.43%.
Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?
7. Vectors $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} are represented on the diagram shown where angle $\mathrm{ADC}=30^{\circ}$. It is also given that $|\boldsymbol{p}|=4$ and $|\boldsymbol{q}|=3$.
(a) Evaluate $\boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})$ and $\boldsymbol{r} \cdot(\boldsymbol{p}-\boldsymbol{q})$.
(b) Find $|\boldsymbol{q}+\boldsymbol{r}|$ and $|\boldsymbol{p}-\boldsymbol{q}|$.

2009 Mathematics

Higher - Paper 1 and Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2009
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2009 Higher Mathematics Examination.
For each question the marking instructions are split into two sections, namely the Generic Marking Instructions and the Specific Marking Instructions. The Generic Marking Instructions indicate what evidence must be seen for each mark to be awarded. The Specific Marking Instructions cover the most common methods you are likely to see throughout your marking.
Below these two sections there may be comments, less common methods and common errors. In general you should use the Specific Marking Instructions together with the comments, less common methods and common errors; only use the Generic Marking Instructions where the candidate has used a method not otherwise covered.

All markers should apply the following general marking principles throughout their marking:

5 The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.

7 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking scheme, a correct answer with no working receives no credit.

8 There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error - each one is simply an error. In general, as a consequence of one of these errors, candidates lose the opportunity of gaining the appropriate ic or pd mark.

9 Normally, do not penalise:

- working subsequent to a correct answer
- omission of units
- legitimate variations in numerical answers
- bad form
- correct working in the "wrong" part of a question
unless specifically mentioned in the marking scheme.
10 No piece of work should be ignored without careful checking - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme. Answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).

11 If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.

12 In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referral to the P.A. Please see the general instructions for P.A. referrals.

No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

14 It is of great importance that the utmost care should be exercised in adding up the marks. Using the Electronic Marks Capture (EMC) screen to tally marks for you is NOT recommended. A manual check of the total, using the grid issued with this marking scheme, can be confirmed by the EMC system.

15 Provided that it has not been replaced by another attempt at a solution, working that has been crossed out by the candidate should be marked in the normal way. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

16 Do not write any comments, words or acronyms on the scripts.
A revised summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:
1 Tick correct working.
2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics: A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Bullets showing where marks are being allocated may be shown on scripts.

Please use the above and nothing else. All of these are to help us be more consistent and accurate.
Page 5 lists the syllabus coding for each topic. This information is given in the legend above the question. The calculator classification is CN (calculator neutral), CR (calculator required) and NC (non-calculator).

Syllabus Coding by Topic

For information only

Paper 1 Section A qu.1-10

Qu.	Key	Item no.	solution
1.01	A	999	- $u_{2}=3 \times 2+4=10$ - $\therefore u_{3}=3 \times 10+4=34$
1.02	B	153	$x^{2}+y^{2}+8 x+6 y-75=0$ - $r=\sqrt{(-4)^{2}+(-3)^{2}-(-75)}$ - $r=10$
1.03	D	950	- $\quad S=\left(\frac{-1+3}{2}, \frac{4+6}{2}\right)=(1,5)$ - $m_{P S}=\frac{5--2}{1--3}=\frac{7}{4}$
1.04	C	60	- $\frac{d y}{d x}=15 x^{2}-12$ - at $x=1$, gradient $=15-12=3$
1.05	B	1201	$\begin{aligned} & \text { - } S T=\sqrt{(2-5)^{2}+(3--1)^{2}} \\ & \\ & S T=5 \\ & \text { - } \quad m_{S T}=\frac{3--1}{2-5}=-\frac{4}{3} \end{aligned}$
1.06	A	1239	- $\quad L=0.7 L+10$ - $L=\frac{10}{0.3}=\frac{100}{3}$
1.07	A	63	- $\cos (2 x)=2 \cos ^{2}(x)-1$ - $2 \times\left(\frac{1}{\sqrt{5}}\right)^{2}-1=-\frac{3}{5}$
1.08	D	1081	- $f(x)=\frac{1}{4} x^{-3}$ - $f^{\prime}(x)=-\frac{3}{4} x^{-4}$
1.09	A	1901	- $x^{2}+(2 x)^{2}=5$ - $5 x^{2}=5, x= \pm 1$
1.10	B	1903	- $x=3, y=\log (3-2)=0$ so B - $\quad x=7, y=\log _{5}(7-2)=1$

Paper 1 Section A qu.11-20

Qu.	Key	Item no.	solution
1.11	B	1145	- $\sin x=\frac{\sqrt{5}}{4}: 2$ solutions - $\sin x=-1: 1$ solution
1.12	C	1313	- $b^{2}-4 a c=73>0$ - roots are real and distinct
1.13	B	1146	- $\tan a^{\circ}=\frac{1}{\sqrt{3}}$ so $a=30$ - $k^{2}=1+3$ so $k=2$
1.14	C	1172	- $f_{\text {max }}=2 \times 1+5=7$ - $f_{\text {min }}=2 \times(-1)+5=3$
1.15	A	1396	- angle at x-axis $=\frac{\pi}{3}$ - $m_{G H}=\tan \frac{\pi}{3}=\sqrt{3}$
1.16	B	1148	- integrate : $x^{4}-3 x^{3}$ - limits : $-[\ldots .]_{0}^{1}$
1.17	A	1133	- $\|\boldsymbol{u}\|=\sqrt{(-3)^{2}+4^{2}}=5$ - a unit vector : $\frac{1}{5}(-3 \boldsymbol{i}+4 \boldsymbol{j})$
1.18	D	394	- $-\frac{1}{2}\left(4-3 x^{2}\right)^{-\frac{3}{2}}$ - multiplied by $-6 x$
1.19	C	1002	- $(2+x)(3-x)<0$ solution is either $-2<x<3 \text { or } x<-2, x>3$ - $x=0$ is FALSE so $x<-2$ and $x>3$
1.20	C	161	$\begin{aligned} \text { - } \frac{d A}{d r} & =4 \pi r+6 \pi \\ \text { - } \frac{d A}{d r_{r=2}} & =8 \pi+6 \pi \\ & =14 \pi \end{aligned}$

Higher Mathematics 2009 v10

qu		Mark	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	1.21
1.21	a	1	G4	cn	09013			1				1			
	b	3	G7	C		1	1	1	3			3			
	c	4	G8	cn		1	2	1	4			4			

Triangle PQR has vertex P on the x-axis.
Q and R are the points $(4,6)$ and $(8,-2)$ respectively.
The equation of PQ is $6 x-7 y+18=0$.
(a) State the coordinates of P
(b) Find the equation of the altitude of the triangle from P .
(c) The altitude from P meets the line QR at T .

Find the coordinates of T.
4

The primary method m.s is based on the following generic m.s.

> Primary Method : Give 1 mark for each•
> $1 \quad P=(-3,0) \quad$ see Notes 1,2
> •2 $\quad m_{Q R}=-2 \quad$ or equivalent
> • ${ }^{3} \quad m_{\text {alt }}=\frac{1}{2} \mathrm{~s} / \mathrm{i}$ by. ${ }^{4}$
> - alt : $y-0=\frac{1}{2}(x+3)$
> see Note 4
> . $\quad Q R: y+2=-2(x-8)$ or $y-6=-2(x-4)$
> - e.g. $x-2 y=-3$ and $2 x+y=14$ see Note 5 \& Options
> . $7 \quad x=5$
> . $8 y=4$

This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.
$\cdot{ }^{1} \quad$ ic \quad interpret x-intercept

- 2 pd find gradient (of QR)
- 3 ss know and use $m_{1} m_{2}=-1$
. 4 ic state equ. of altitude
$.5 \quad$ ic state equ. of line (QR)
- 6 ss prepare to solve sim. equ.
- 7 pd solve for x
- 8 pd solve for y

Notes

1. Without any working;
accept $(-3,0)$
accept $x=-3, y=0$
accept $x=-3$ and $y=0$ appearing at \bullet^{4}.
2. $x=-3$ appearing as a consquence of substituting $y=0$ may be awarded \bullet^{1}.
3. At \bullet^{3}, whatever perpendicular gradient is found, it must be in its simplest form either at \bullet^{3} or \bullet^{4}.
4. ${ }^{4}$ is only available as a consequence of attempting to find and use a perpendicular gradient together with whatever coordinates they have for P.

Notes cont

5. \bullet^{6}, \bullet^{7} and \bullet^{8} are only available for attempting to solve equations for PT and QR.
6. ${ }^{6}$ is a strategy mark for juxtaposing two correctly rearranged equations. Equating zeroes does not gain \bullet^{6}.
7. The answers for \bullet^{7} and \bullet^{8} must be of the form of a mixed number or a fraction (vulgar or decimal).

Common Errors

- $\quad X \quad m_{Q R}=\ldots=-1$
- ${ }^{3} \quad X \vee \quad m_{\perp}=1$
- ${ }^{4} \quad X \vee \quad y-0=1(x+3)$

Option 1 for \bullet^{5} to \bullet^{8} :

-5 $\quad Q R: y+2=-2(x-8)$

- $6 \quad \frac{1}{2}(x+3)=-2(x-8)-2$
. $7 \quad x=5$
- $8 \quad y=4$

Option 2 for ${ }^{5}$ to \bullet^{8} :
. $5 \quad Q R: y-6=-2(x-4)$

- $6 \quad \frac{1}{2}(x+3)=-2(x-4)+6$
. $7 \quad x=5$
. $8 \quad y=4$

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	1.22
1.22	a	4	G23,24	cn	09005	1		3	4					4	
	b	4	G27	cn		2	2		4					4	

D, E and F have coordinates $(10,-8,-15),(1,-2,-3)$ and $(-2,0,1)$ respectively.
(a) (i) Show that D, E and F are collinear.
(ii) Find the ratio in which E divides DF.
(b) G has coordinates $(k, 1,0)$.

Given that DE is perpendicular to GE, find the value of k.
4

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

In this question expressing vectors as coordinates and vice versa is treated as bad form - do not penalise.

$\bullet \bullet^{1}$	ss	use vector approach
\bullet^{2}	ic	compare two vectors
\bullet^{3}	ic	complete proof
\bullet^{4}	ic	state ratio
$\boldsymbol{\bullet}^{5}$	ss	use vector approach
\bullet^{6}	ss	know scalar product $=0$ for \perp vectors
$\boldsymbol{\bullet}^{7}$	pd	start to solve
\bullet^{8}	pd	complete

Primary Method: Give 1 mark for each \cdot

- $\overrightarrow{D E}=\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)$ or $\overrightarrow{E F}=\left(\begin{array}{c}-3 \\ 2 \\ 4\end{array}\right)$

see Note 1

-2 2nd column vector and $\overrightarrow{D E}=3 \overrightarrow{E F}$ (or equiv.)
.$^{3} \quad \overrightarrow{D E}$ and $\overrightarrow{E F}$ have common point and common direction
hence D, E and F collinear
see Note 2

- 4 : 1 stated explicitly
. $5 \overrightarrow{G E}=\left(\begin{array}{c}1-k \\ -3 \\ -3\end{array}\right)$
- ${ }^{6} \quad \overrightarrow{D E} \cdot \overrightarrow{G E}=0$
s/iby ${ }^{7}$
- $\quad-9(1-k)+6 \times(-3)+12 \times(-3)$
. $8 \quad k=7$

Notes

1. $\overrightarrow{D E} \& \overrightarrow{D F}$ or $\overrightarrow{E F} \& \overrightarrow{D F}$ are alternatives to $\overrightarrow{D E} \& \overrightarrow{E F}$.
2. \cdot^{3} can only be awarded if a candidate has stated

* "common point",
* "common direction" (or "parallel")
* and "collinear"

3. The " $=0$ " shown at $\cdot{ }^{6}$ must appear somewhere before \bullet^{8}.
4. $\operatorname{In}(\mathrm{b})$ "G.E" $=\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right)=0$ leading to $k=2$, award 1 mark.
5. If \boldsymbol{a} and \boldsymbol{b} are not defined, then merely quoting $\boldsymbol{a} \cdot \boldsymbol{b}=0$ does not gain ${ }^{6}$.

Common Error 1 for (b)

$$
\begin{array}{lll}
\cdot 5 & \sqrt{G E}=\left(\begin{array}{c}
1-k \\
-3 \\
-3
\end{array}\right) \\
\cdot{ }^{6} & X & \overrightarrow{D E} \cdot \overrightarrow{G E}=-1 \\
\cdot{ }^{7} & X \sqrt{ } & -9(1-k)+6 \times(-3) \\
& & +12 \times(-3)=-1 \\
\cdot{ }^{8} & X \sqrt{ } & k=\frac{64}{9}
\end{array}
$$

CommonError 2 for (b)
.${ }^{5} X \quad\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right)$
${ }^{6} \quad X \sqrt{ }\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)=0$

- $\quad X \sqrt{ } \quad \ldots . . . k=\frac{2}{3}$ i.e. 2 marks

Common Error 3 for (b)
${ }^{5} X \quad\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right)$

- ${ }^{6} X\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)=-1$
- $X \sqrt{ } \quad \ldots . . . k=\frac{7}{9}$ i.e. 1 mark

Options for \bullet^{1} to \bullet^{3} :
1

- $\overrightarrow{D E}=\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right) \cdot{ }^{2} \overrightarrow{D F}=\left(\begin{array}{c}-12 \\ 8 \\ 16\end{array}\right)=\frac{4}{3} \overrightarrow{D E}$
-3 $\quad \overrightarrow{D E}$ and $\overrightarrow{D F}$ have common point and common direction hence D, E and F collinear

2
$\cdot \overrightarrow{E F}=\left(\begin{array}{c}-3 \\ 2 \\ 4\end{array}\right) \cdot 2 \overrightarrow{D F}=\left(\begin{array}{c}-12 \\ 8 \\ 16\end{array}\right)=4 \overrightarrow{E F}$

- $\quad \overrightarrow{E F}$ and $\overrightarrow{D F}$ have common point and common direction
hence D, E and F collinear

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	1.23
1.23	a	2	A3	cn	09016			2		2		2			
	b	3	A3	cn		1		2		3		3			

The diagram shows a sketch of the function $y=f(x)$.
(a) Copy the diagram and on it sketch the graph of $y=f(2 x) . \quad 2$
(b) On a separate diagram sketch the graph of $y=1-f(2 x)$. 3

The primary method m.s is based on the following generic m.s.
 This generic marking scheme may be used as an equivalence guide
 but only where a candidate does not use the primary method or any
 alternative method shown in detail in the marking scheme.

- $1 \quad$ ic \quad scaling parallel to x-axis
.$^{2} \quad$ ic annotate graph
. 3 ss correct order for refl $(x) \&$ trans
$\cdot{ }^{4} \quad$ ic start to annotate final sketch
. 5 ic complete annotation

Primary Method: Give 1 mark for each -

3 points : the origin, $(1,8)$ and $(-2,8)$

- $1 \quad$ sketch and 1 point correct
. ${ }^{2}$ other two points correct
- reflect in x-axis, then vertical trans. s/i by.4
final points : $(0,1),(1,-7)$ and $(-2,-7)$
- 4 sketch and 1 final point correct
- 5 the other two final points correct

Notes

1. In (a) sketching $y=f\left(\frac{1}{2} x\right)$ loses ${ }^{1}$ but may gain $\cdot{ }^{2}$ with appropriate annotation.
2. In (a) no marks are awarded for any other function.
3. Do not penalise omission of the original function in the candidate's sketch for (a).
4. In (b)

5. In (b): if a candidate does not use their solution for $y=f(2 x)$, a maximum of two marks may be awarded for a "correct" solution.
6. In (b):

No marks are available in (b) unless both a reflection and a translation have been carried out.

Higher Mathematics 2009 v10

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$1 \cdot 24$
1.24	a	3	T8, T3	nc	09002	1	1	1	3				3		
	b	2	T8	cn				2	2				2		
	c	4	T11	nc		1	1	2	1	3			4		

(a) Using the fact that $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$, find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
(b) Show that $\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})=2 \sin \mathrm{~A} \cos \mathrm{~B}$. 2
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
(ii) Hence or otherwise find the exact value of $\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right)$. 4

Notes

1. Candidates who work throughout in degrees can gain all the marks.
2. In (a)
$\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{3}\right)+\sin \left(\frac{\pi}{4}\right)$ etc cannot be awarded any marks. i.e. \bullet^{1}, \bullet^{2} and \bullet^{3} are not available.
3. In (b), candidates who use numerical values for A and B earn no marks.
4. In (c)
$\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{4}\right)$ etc cannot be awarded any marks. i.e. \cdot^{7}, \bullet^{8} and $\cdot{ }^{9}$ are not available.

Common Errors

1. $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$
$\therefore \frac{\pi}{12}=\frac{1}{7}\left(\frac{\pi}{3}+\frac{\pi}{4}\right)$ does not gain ${ }^{6}$.

Alternatives

1. for ${ }^{6}$ to ${ }^{8}$

- $6 \quad \sin \left(\frac{\pi}{12}\right)=\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4}$
. $7 \quad \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}$
. $\frac{\sqrt{3}-1}{2 \sqrt{2}}$ or equivalent

Higher Mathematics 2009 v10

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A		U1	U2	U3		2.01
2.01	8	C8,C9	cn	08507	3	4	1	8									

Find the coordinates of the turning points of the curve with equation $y=x^{3}-3 x^{2}-9 x+12$
and determine their nature.
The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shownin detail in the marking scheme.
. ${ }^{1}$
.
•

$$
\begin{aligned}
& \text { Primary Method : Give } 1 \text { mark for each • } \\
& { }^{1} \quad \frac{d y}{d x}=\ldots(1 \text { term correct }) \\
& \text { - } 23 x^{2}-6 x-9 \\
& \text {-3 } \frac{d y}{d x}=0 \\
& \text {-4 } \quad 3(x+1)(x-3) \\
& \begin{array}{c|c|c}
& \text {.5 } & \mathbf{. 0}^{6} \\
\cline { 2 - 3 } \cdot \mathbf{. 5}^{5} & x=-1 & x=3 \\
.6 & y=17 & y=-15
\end{array} \\
&
\end{aligned}
$$

Notes

1. The " $=0$ " (shown at ${ }^{3}$) must occur at least once before $\cdot{ }^{5}$.
2. ${ }^{4}$ is only available as a consequence of solving $\frac{d y}{d x}=0$.
3. The nature table must reflect previous working from ${ }^{4}$.
4. For ${ }^{4}$, accept $(x+1)(x-3)$.
5. The use of the 2 nd derivative is an acceptable strategy.
6. As shown in the Primary Method, $\left(\cdot^{5}\right.$ and $\left.\cdot{ }^{6}\right)$ and $\left(\cdot^{7}\right.$ and $\left.\cdot^{8}\right)$ can be marked horizontally or vertically.
7. $\cdot{ }^{1}, \bullet^{2}$ and \bullet^{3} are the only marks available to candidates who solve

$$
3 x^{2}-6 x=9 \text {. }
$$

Notes cont

8. If \cdot^{7} is not awarded, \bullet^{8} is only available as follow-through if there is clear evidence of where the signs at the $\cdot{ }^{7}$ stage have been obtained.
9. For ${ }^{7}$ and ${ }^{8}$

The completed nature table is worth
2 marks if correct.
If the labels " x " and/or " $\frac{d y}{d x}$ " are missing from an otherwise correct table
then award 1 mark.
If the labels " x " and/or $\frac{d y}{d x}$ " are missing from a table where either ${ }^{7}$ or.8 (vertically) would otherwise have been awarded, then award 0 marks.

Alternatives

This would be fairly common:

- $\sqrt{ } \sqrt{ } \frac{d y}{d x}=\ldots(1$ term correct $)$
. $2 \sqrt{ } \quad 3 x^{2}-6 x-9$
$\cdot{ }^{3}, \bullet^{4} \quad \sqrt{ } \sqrt{ }(3 x-9)(x+1)=0$
or $(3 x+3)(x-3)=0$

Min. requirements
of a nature table

x	\ldots	-1	\ldots
$\frac{d y}{d x}$	+	0	-
	\max		

Preferred nature table

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.02
2.02	a	3	A4	cn	09011	1		2	3			3			
	b	3	C1	cn		2	1		3			3			

Functions f and g are given by $f(x)=3 x+1$ and $g(x)=x^{2}-2$.
(a) (i) Find $p(x)$ where $p(x)=f(g(x))$
(ii) Find $q(x)$ where $q(x)=g(f(x))$. 3
(b) Solve $p^{\prime}(x)=q^{\prime}(x)$. 3

The primary method m.s is based on the following generic m.s. This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.		
. ${ }^{1}$	ss	substitute for
.2	ic	complete
	ic	sub. and com
. ${ }^{4}$	ss	simplify
	pd	differentiate
	pd	solve

Primary Method: Give 1 mark for each •

- 1 f($\left.x^{2}-2\right) \quad \mathbf{s} / \mathbf{i} \mathbf{b y} \cdot{ }^{2}$
- $23\left(x^{2}-2\right)+1$
. $3 \quad(3 x+1)^{2}-2$

	. 4	. 5	
. 4	$3 x^{2}-5$	$9 x^{2}+6 x-1$	s/iby ${ }^{5}$
. 5	$6 x$	$18 x+6$ or equiv.	
	$x=-$		

Notes

1. In (a)

2 marks are available for finding either $f(g(x))$ or $g(f(x))$ and 1 mark for finding the other.
2. In (b)
candidates who start by equating $p(x)$ and $q(x)$ and then differentiate may earn \bullet^{4} and ${ }^{6}$ only.

Common Errors	Alternative for \bullet^{1} to \bullet^{3} :
1	- $1 \quad f(g(x))=3 \times$
$p(x)$ and $q(x)$ switched round:	
$X \quad \cdot \quad p(x)=g(3 x+1)$	$.^{2} \quad f(g(x))=3\left(x^{2}-2\right)+1$
$X \sqrt{ } \cdot{ }^{2} \quad p(x)=(3 x+1)^{2}-2$	$\mathrm{g}(f(x))=(f(x))^{2}-2$
$X \vee \cdot{ }^{3} \quad q(x)=\ldots \ldots .=3\left(x^{2}-2\right)+1$	-3 $\quad \mathrm{g}(f(x))=(3 x+1)^{2}-2$
2	
Candidates who find $f(f(x))$ and $g(g(x))$ can earn no marks in (a) but	
$X \vee \cdot 4 \quad 9 x+4$ and $x^{4}-4 x^{2}+2$	
$X \vee \cdot 5 \quad 9=4 x^{3}-8 x$	
$X X \cdot 6 \quad$ not available	
3	
$X \quad .43 x^{2}-1$ and $9 x^{2}+6 x-1$	
$X \sqrt{ } \cdot 5 \quad 6 x$ and $18 x+6$	
$X \sqrt{ } \cdot 6 \quad x=-\frac{1}{2}$	

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.03
2.03	a	4	A21	Cn	09008	1	1	2	4				4		
	b	5	A32	cn		2	1	2		5				5	

(a) (i) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(ii) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully. 4
(b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$. 5


```
Primary Method: Give 1 mark for each•
-1 \(f(1)=1+8+11-20=0\) so \(x=1\) is a root See Note 1
- \({ }^{2} \quad(x-1)\left(x^{2} \ldots \ldots ..\right)\)
. \(\quad\left(x^{2}+9 x+20\right)\)
\(4 \quad(x-1)(x+4)(x+5) \quad\) Stated explicitly
. \({ }^{5} \quad \log _{2}\left((x+3)\left(x^{2}+5 x-4\right)\right) \quad\) s/iby. \({ }^{6}\)
\(6 \quad(x+3)\left(x^{2}+5 x-4\right)=2^{3}\)
- \({ }^{7} \quad x^{3}+8 x^{2}+11 x-20=0\)
. \(8 \quad x=1\) or \(x=-4\) or \(x=-5\) Stated explicitly here
- \(\quad x=1\) only
```


Notes

1. For candidates evaluating the function, some acknowledgement of the resulting zero must be shown in order to gain \bullet
2. For candidates using synthetic division (shown in Alt. box), some acknowledgement of the resulting zero must be shown in order to gain \bullet^{2}.
3. In option 2 the "zero" has been highlighted by underlining. This can also appear in colour, bold or boxed.
Some acknowledgement of the resulting zero must be shown in order to gain \bullet^{1} as indicated in each option.

Common Errors 1 $\bullet^{5} X \quad \log _{2} \frac{x^{2}+5 x-4}{x+3}=3$ $\bullet^{6} X \sqrt{ } \quad \frac{x^{2}+5 x-4}{x+3}=2^{3}$ $\bullet^{7} X \quad x^{2}-3 x-28=0$ $\bullet^{8} X \quad x=7$ or -4 $\bullet{ }^{9} X \sqrt{ } \quad x=7$ ONLY	Options Alternative for \bullet^{1} to \bullet^{2}. 1 . 1 8 11 -20 1 1 9 20 1 9 20 0 rem. $=0$ so $x=1$ is root see note 2 2 $\cdot 1$ 1 8 11 -20 1 1 9 see note 3

Higher Mathematics 2009 v10

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$2 \cdot 04$
2.04	a	1	A6	cn	08026		1		1			1			
	b	5	G11	cn		2		3	5				5		
	c	4	G15	nc		1	1	2			4		4		

(a) Show that the point $\mathrm{P}(5,10)$ lies on circle C_{1} with equation $(x+1)^{2}+(y-2)^{2}=100$.
(b) PQ is a diameter of this circle as shown in the diagram.

Find the equation of the tangent at Q .
(c) Two circles, C_{2} and C_{3}, touch circle C_{1} at Q .

The radius of each of these circles is twice the radius of circle C_{1}. Find the equations of circles C_{2} and C_{3}.

Notes

1. In (a), candidates may choose to show that distance $\mathrm{CP}=$ the radius. Markers should note that evidence for \bullet^{2}, which is in (b), may appear in (a).
2. The minimum requirement for ${ }^{1}$ is as shown in the Primary Method.
3. $\cdot 6$ is only available as a conseqence of attempting to find a perp. gradient.
4. For candidates who choose a Q ex nihilo, ${ }^{6}$ is only available if the chosen Q lies in the 3 rd quadrant.

Notes cont

5. ${ }^{9}$ and/or ${ }^{10}$ are only available as follow-through if a centre with numerical coordinates has been stated explicitly.
6. ${ }^{10}$ is not available as a followthrough; it must be correct.
```
Alternative for }\mp@subsup{\bullet}{}{8},\mp@subsup{\bullet}{}{9}\mathrm{ and •10
.8 centre = (-19,-22) s/iby.9
.9 (x+19)}\mp@subsup{)}{}{2}+(y+22\mp@subsup{)}{}{2}=40
.10}(x-5\mp@subsup{)}{}{2}+(y-10\mp@subsup{)}{}{2}=40
```

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.05
2.05	a	1	T4	cn	09026			1	1			1			
	b	5	T6	cr		1	3	1	5				5		
	c	6	C17,23	cr		1	3	2		6			6		

The graphs of $y=f(x)$ and $y=g(x)$ are shown in the diagram. $f(x)=-4 \cos (2 x)+3$ and $g(x)$ is of the form $g(x)=m \cos (n x)$.
(a) Write down the values of m and n.
(b) Find, correct to 1 decimal place, the coordinates of the
points of intersection of the two graphs in the interval shown.
(c) Calculate the shaded area.

The primary method m.s is based on the following generic m.s.		
This generic marking scheme may be used as an equivalence guide		
but only where a candidate does not use the primary method or any		
alternative method shownin detail in the marking scheme.		
\bullet^{1}	ic	interprets graph
\bullet^{2}	ss	knows how to find intersection
\bullet^{3}	pd	starts to solve
\bullet^{4}	pd	finds x-coordinate in the 1st quadrant
\bullet^{5}	pd	finds x-coordinate in the 2nd quadrant
\bullet^{6}	pd	finds y-coordinates
\bullet^{7}	ss	knows how to find area
\bullet^{8}	ic	states limits
\bullet^{9}	pd	integrate
\bullet^{10}	pd	integrate
\bullet^{11}	ic	substitute limits
\bullet^{12}	pd	evaluate area

Continued on next page

Primary Method: Give 1 mark for each •

- $1 \quad m=3$ and $n=2$
- ${ }^{2} 3 \cos 2 x=-4 \cos 2 x+3$
- $3 \quad \cos 2 x=\frac{3}{7}$
- ${ }^{4} x=0.6$
. $5 \quad x=2.6$
- ${ }^{6} y=1.3,1.3$
. $7 \int(-4 \cos 2 x+3-3 \cos 2 x) d x$
- $8 \int_{0.6}^{2.6}$
- $9 \quad-7 \sin 2 x$ "
- ${ }^{10} 3 x-\frac{7}{2} \sin 2 x$
- ${ }^{11}\left(3 \times 2.6-\frac{7}{2} \sin 5.2\right)-\left(3 \times 0.6-\frac{7}{2} \sin 1.2\right)$
. $12 \quad 12.4$

Continued on next page

Question 2.05 cont.

Notes 1

1. Answers which are not rounded should be treated as "bad form" and not penalised.
2. If $n=1$ from (a), then in (b) the followthrough solution is 0.697 and 5.586 .
.${ }^{5}$ is not available in (b)
and \cdot^{8} is not available in (c).
3. If $n=3$ from (a), then in (b) only \bullet^{2} is available.
4. $\mathrm{At}{ }^{5}$:
$x=2.5$ can only come from calculating
$\pi-0.6$. For this to be accepted, candidates must state that it comes from symmetry of the graph.
5. For ${ }^{6}$

Acceptable values of y will lie in the range 1.1 to 1.6
(due to early rounding !!)
6. Values of x used for the limits must lie between 0 and π,
i.e $0<$ limits $<\pi$, else $\cdot{ }^{8}$ is lost.
7. \cdot^{8}, \bullet^{11} and $\cdot{ }^{12}$ are not available to candidates who use -3 and 7 as the limits.
8. Candidates must deal appropriately with any extraneous negative signs which may appear before \cdot^{12} can be awarded.
It is considered inappropriate to write \qquad $.=-12.4=12.4$

Common Errors

1. For candidates who work in degrees throughout this question, the following marks are available:

In (b)		In (c)	
.2	\checkmark	. 7	\checkmark
. ${ }^{\text {a }}$	\checkmark	. 8	X
. 4	X	. 9	X
. 5	$X \vee$. ${ }^{10}$	$X V$
. 6	\checkmark	.11	X
		. 12	X

2. In (c) candidates who deal with $f(x)$ and $g(x)$ separately and add can only earn at most
${ }^{8}$ correct limits

- 9 for correct integral of $f(x)$
${ }^{10}$ for correct integral of $g(x)$
${ }^{11}$ for correct substitution.

Alternative for ${ }^{3},{ }^{4},{ }^{4}$

Option 1

- $\quad \cos ^{2} x=\frac{10}{14}$
. $4 \quad \cos x=\sqrt{\frac{10}{14}}, \quad \cos x=-\sqrt{\frac{10}{14}}$
. $5 x=0.6 \quad x=2.6$

Option 2

. $\cos ^{2} x=\frac{10}{14}$
. $\quad \cos x=\sqrt{\frac{10}{14}}$ and $x=0.6$
. $5 \quad \cos x=-\sqrt{\frac{10}{14}}$ and $x=2.6$

Option 3

- $\sin ^{2} x=\frac{4}{14}$
.4 $\sin x=\sqrt{\frac{4}{14}}$
. $5 x=0.6, x=2.6$

Alternative for $\mathbf{\bullet}^{9},{ }^{10}$

- $9 \quad-4 \sin 2 x-3 \sin 2 x$
- $103 x-\frac{4}{2} \sin 2 x-\frac{3}{2} \sin 2 x$

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.06
2.06	a	2	A30, 34	Cr	08532		1	1		2				2	
	b	3	A30,34	cr		1	1	1			3			3	

The size of the human population, N, can be modelled using the equation $N=N_{0} e^{r t}$ where N_{0} is the population in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.
(a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of $1 \cdot 6 \%$. Assuming this growth rate remains constant, what would be the population in 2020 ?
(b) In 2006 the population of Scotland was approximately $5 \cdot 1$ million, with an annual rate of increase of $0 \cdot 43 \%$. Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ic substitute into equation
- ${ }^{2}$ pd evaluate exponential expression
- 3 ic interpret info and substitute
- ${ }^{4}$ ss convert expo. equ. to log. equ.
. 5 pd process

Primary Method : Give 1 mark for each•

- ${ }^{1} \quad 61 e^{0.016 \times 14}$
- 276 million or equiv.
- $3 \quad 10.2=5.1 e^{0.0043 t}$
- ${ }^{4} 0.0043 t=\ln 2$
. ${ }^{5} t=161.2$ years

Notes

1. For \bullet^{2}, do not accept 76.

Accept any answer which rounds to 76 million and was obtained from legitimate sources.
2. ${ }^{5}$ is for a rounded up answer or implying a rounded-up answer. Acceptable answers would include 162 and 161.2 but not 161 .

3. Cave

Beware of poor imitations which yield results similar/same to that given in the paradigm, e.g.
compound percentage
or recurrence relations.
These can receive no credit but see Common Error 2 for exception.

Common Errors

1 Candidates who misread the
rate of increase:
${ }^{1} \quad X \quad 61 e^{1.6 \times 14}$
. ${ }^{2} \quad X \sqrt{ } \quad 3.26 \times 10^{11}$ million

- ${ }^{3} \quad X \sqrt{ } \quad 10.2=5.1 e^{0.43 t}$
. ${ }^{4} \quad X \sqrt{ } \quad 0.43 t=\ln 2$
${ }^{5} \quad X \sqrt{ } \quad t=1.612$

2
${ }^{1} \quad X \quad 61 \times 1.016^{14}$
. ${ }^{2} \quad X \quad 76$ million
${ }^{3} \quad X \quad 10.2=5.1 \times 1.0043^{t}$

- ${ }^{4} \quad X \sqrt{ } \quad t \ln 1.0043=\ln 2$
. ${ }^{5} X \sqrt{ } \quad t=162$
i.e. award 2 marks

```
Options
1
    61000000ee 0.016\times14
.2 76000000
2
-1 (61 million)}\times\mp@subsup{e}{}{0.016\times14
. }276\mathrm{ million
3
.1 61000000e e.224
. }276\mathrm{ million
4
. }
.2 76000000
```


Higher Mathematics 2009 v10

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.07
2.07	a	6	G29,26	cn	09031	1	2	3		6				6	
	b	4	G21,30	cr		1	1	2		2	2			4	

Vectors $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} are represented on the diagram shown where angle $\mathrm{ADC}=30^{\circ}$. It is also given that $|\boldsymbol{p}|=4$ and $|\boldsymbol{q}|=3$.
(a) Evaluate $\boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})$ and $\boldsymbol{r} \cdot(\boldsymbol{p}-\boldsymbol{q})$. 6
(b) Find $|\boldsymbol{q}+\boldsymbol{r}|$ and $|\boldsymbol{p}-\boldsymbol{q}|$. 4

Primary Method: Give 1 mark for each •

. ${ }^{1} \quad$ p. $\boldsymbol{q}+\boldsymbol{p} . \boldsymbol{r}$
s/iby ($\cdot{ }^{2}$ and \cdot^{4})

- ${ }^{2} 4 \times 3 \cos 30^{\circ}$
s/iby ${ }^{3}$
. $3 \quad 6 \sqrt{3} \quad(10.4)$
- ${ }^{4}$ p. $\boldsymbol{r}=0 \quad$ explicitly stated
. ${ }^{-} \quad-|\boldsymbol{r}| \times 3 \cos 120^{\circ}$
- $6 \quad r=\frac{3}{2}$ and $\ldots \frac{9}{4}$
- $\boldsymbol{q}+\boldsymbol{r} \equiv$ from D to the projection of A onto DC
. $8 \quad|\boldsymbol{q}+\boldsymbol{r}|=\frac{3 \sqrt{3}}{2}$
. $9 \quad \boldsymbol{p}-\boldsymbol{q} \equiv \overrightarrow{A C}$
. ${ }^{10}|\boldsymbol{p}-\boldsymbol{q}|=\sqrt{\left(4-\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}$

Notes

1. $\boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})=p q+p r$ gains no marks unless the "vectors" are treated correctly further on.
In this case treat this as bad form.
2. The evidence for $\cdot{ }^{7}$ and $\cdot{ }^{9}$ will likely appear in a diagram with the vectors $\boldsymbol{q}+\boldsymbol{r}$ and $\boldsymbol{p}-\boldsymbol{q}$ clearly marked.

Common Errors

1 For ${ }^{1}$ to ${ }^{4}$

$$
\begin{aligned}
p .(\boldsymbol{q}+\boldsymbol{r}) & =\boldsymbol{p} . \boldsymbol{q}+\boldsymbol{p} . \boldsymbol{r} \\
& =4 \times 3+4 \times \frac{3}{2} \\
& =18
\end{aligned}
$$

can only be awarded ${ }^{1}$.

Alternatives 1

1 For \bullet^{7} and \bullet^{8} :
$.^{7} \sqrt{ } \boldsymbol{p} .(\boldsymbol{q}+\boldsymbol{r})=|\boldsymbol{p}||\boldsymbol{q}+\boldsymbol{r}| \cos 0$

$$
6 \sqrt{3}=4|\boldsymbol{q}+\boldsymbol{r}| \times 1
$$

$.8 \sqrt{ }|\boldsymbol{q}+\boldsymbol{r}|=\frac{6 \sqrt{3}}{4}=\frac{3 \sqrt{3}}{2}$

2 For $\cdot{ }^{9}, \bullet^{10}$:
Using right-angled $\triangle \mathrm{ABC}$

- ${ }^{-} \overrightarrow{A C}=\boldsymbol{p}-\boldsymbol{q}$, and $|\overrightarrow{A B}|=4-\frac{3 \sqrt{3}}{2},|\overrightarrow{B C}|=\frac{3}{2}$ and $A \widehat{C} B=43.06^{\circ}$
- ${ }^{10}$ use $\boldsymbol{r} \cdot(\boldsymbol{p}-\boldsymbol{q})=\frac{9}{4}$
to get $|\boldsymbol{p}-\boldsymbol{q}|=2.05$

Alternatives 2

3
For $\bullet^{7}, \bullet^{8}, \bullet^{9}, \bullet^{10}$:
Set up a coord system with origin at D

- $\quad C=(4,0), A=\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right), B=\left(4, \frac{3}{2}\right)$
. $8 \quad \boldsymbol{p}=\binom{4}{0}, \boldsymbol{q}=\binom{\frac{3 \sqrt{3}}{2}}{\frac{3}{2}}, \boldsymbol{r}=\binom{0}{-\frac{3}{2}}$
- $9 \quad \boldsymbol{q}+\boldsymbol{r}=\binom{\frac{3 \sqrt{3}}{2}}{0}$ and $|\boldsymbol{q}+\boldsymbol{r}|=2.60$
. ${ }^{10} \boldsymbol{p}-\boldsymbol{q}=\binom{4-\frac{3 \sqrt{3}}{2}}{-\frac{3}{2}}$ and $|\boldsymbol{p}-\boldsymbol{q}|=2.05$

Higher Mathematics 2009 v10

Marks : May 2009

Centre/group

Higher Mathematics 2009 v10
the end

