National 4: Relationships

Learning Intention I can draw and interpret straight line equations.											
Success Criteria	Success Criteria						©	@	8		
I can complete a table of values to identify a set of points.											
Complete the table for $y = 3x + 1$	<i>x</i> 1 <i>y</i>	2	3								
I can plot a set of points and join the	m to make a s	traight li	ne. [Draw th	ne line	y = 3x	+1.				
 I can find the equation of a vertical or horizontal line from its graph. A vertical line has an equation of the form x = c. Draw the lines x = 3 and x = -5. A horizontal line has an equation of the form y = c. Draw the lines y = -3 and y = 4. 											
Write down the equations of these I	ines:	3				0	2 1	>			
Extension • I know that $v = mx + c$ is the equation	on of a straigh	t line wit	a gradic	ont m	and wi	ntorco	nt a				
TRIOW that y man 1 6 is the equation			grauie	ent m e	and yn	nterce	ρι <i>ε</i> .				
• I can draw a straight line given the value of the line with $m=2$ and $c=3$.	aiues oi <i>m</i> and	1 C.									

Learning Intention I can solve linear equations and change the subject of a formula.								
Success Criteria	©	•	8					
I know how to use the balancing method to solve an equation.								
I know to use opposite processes when balancing an equation.								
I know that as equations get more complex, more steps are needed to solve them.								
• I can recognise and solve equations which involve 2 steps: $3x + 5 = 17$ $8p - 11 = 5$								
• I can recognise and solve equations which involve 3 steps: $5t - 2 = 2t + 19$ $7y + 11 = 4y - 19$								
• I can solve equations involving brackets: $3(x-5) = 21$ $5(m+7) - 2(3m-4) = 45$								
• I can solve inequalities of the form: $ax + b < c$ Solve the inequality: $8x - 11 < 5$								
I can change the subject of a formula using the balancing method.								
I know that my answer must start with the subject on the left hand side.								
I recognise formulae that can be rearranged in 1 step.								
Change the subject of the formula to x : $x + A = B$ $gx = k$ $\frac{x}{t} = f$								
I recognise formulae that can be rearranged in 2 steps.								
Change the subject of the formula to x : $dx - h = k$ $\frac{d}{x} = g$ $y = 2x + 4$								

Learning Intention I can use the Theorem of Pythagoras.

Success Criteria	©	©	8
I know that the longest side in a right angled triangle is called the hypotenuse.			
I know that the hypotenuse is opposite the right angle. hypotenuse			
I can use the Theorem of Pythagoras to find the missing side in a right angled triangle.			
 I know that to use the Theorem of Pythagoras I need the length of 2 of the 3 sides in a right angled triangle. Calculate the length of the missing side in each triangle. 5 cm 11 cm 15 cm 			

Success Criteria	0	(2)	8
I can solve problems by applying the Theorem of Pythagoras to isosceles triangles, squares and			
rectangles and other shapes by identifying and drawing a right angled triangle and labelling the sides			
appropriately.			
Examples			
(1) A flagpole is held in position by two ropes which are 8 m in length.			
If the ropes are fixed 6 metres apart on the ground, what is height of the flagpole?			
13 m			
(2) The diagram below shows the shape of Samiha's garden.			
Samiha plants a hedge along side AB.			
Calculate the length of the hedge.			
• I can calculate the distance between 2 points using the Theorem of Pythagoras.			
Calculate the length of the line segment between A(2, 5) and B(4, 9).			
Extension			
I know how to use the converse of the Theorem of Pythagoras			
and can communicate my solution and conclusion correctly. 10 cm			
Is this a right angled triangle?			

Learning Intention I can use a fractional scale factor to enlarge or reduce a shape.							
Success Criteria	©	©	8				
• I know how to use a scale factor to enlarge or reduce a shape. Draw an enlargement of the given shape using a scale factor of $\frac{3}{2}$. Draw a reduction of the given shape using a scale factor of $\frac{1}{2}$.							
• I know how to find a linear scale factor. These rectangles are similar. (a) What is the linear scale factor? (b) Calculate x.							
• I can solve problems using a linear scale factor. The diagram below shows the design for a house window. Find the value of x. 1.2 m							

Learning Intention I can solve problems using a combination of angle properties.							
Success Criteria	©	@	8				
I know that when 2 lines cross, the vertically opposite angles are equal.							
• I know that the angles in a triangle add up to 180° .							
I know the angle properties of an isosceles, equilateral and right angled triangle.							
• I know that the angles in a quadrilateral add up to 360°.							
I know that alternate angles are equal.							
I know that corresponding angles are equal.							
I know that when two parallel lines are crossed by another line							
alternate (Z) and corresponding (F) angles are created.							
Calculate the size of all the missing angles in this diagram.							

Success Criteria		©	(2)	8
In the diagram	PQRS is a square P Q			
	➤ PR is a diagonal of the square			
	Triangle RST is equilateral.			
Calculate the size of	f angle PTS.			
I know that every tr	riangle in a semi-circle is right angled.			
In the diagram AB is	s a diameter.			
If angle ABC = 32°. (Calculate the size of angle CAB.			
I know that a tange	nt is a straight line which			
touches a circle at o	one point only.			
I know that a tange	nt is a straight line which			
makes a right angle	with the radius.			
In the diagram	➤ a circle, centre O, is drawn			
	the line AC is a tangent to the circle at B			
	➤ Angle DBA = 70°.			
Calculate the size of	f the shaded angle BOE.			

Learning Intention I can use trigonometry in right angled triangles to calculate an angle or a side.			
Success Criteria	©	@	8
• I know that the three sides in a right angled triangle are called the opposite, adjacent and hypotenuse.			
 Given an angle, I can draw and label the 3 sides of a right angled triangle correctly. hypotenuse adjacent opposite I can use "SOH CAH TOA" to determine the correct ratio. 			
• I know how to calculate an angle given 2 sides. Calculate the size of angle x° . 12 cm x° 7 cm			
• I know how to calculate a side given an angle and a side. Calculate the length of side x . 17 mm 15 cm x cm			

Su	iccess Cr	iteria	©	©	8
•	I can so	olve problems by applying trigonometry to isosceles triangles, squares and rectangles and other			
	shapes by identifying and drawing a right angled triangle and labelling the sides appropriately.				
	(1)	A ramp has been constructed at a health centre.			
		It is 3·6 metres long and rises through 0·4 metres.			
		0·4 m 3·6 m			
		Calculate the angle, x° , that the ramp makes with the horizontal.			
	(2)	A ramp in a skateboard park is in the shape of a triangle. The ramp is 250 centimetres long and it makes an angle of 35° with the ground. Calculate the height, h, of the ramp.			