EP30/H/01

Mathematics Paper 1
 (Non-Calculator)

Date - Not applicable
Duration - 1 hour and 10 minutes

Total marks - 60
Attempt ALL questions.
You may NOT use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\mathbf{a . b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

Total marks - 60

Attempt ALL questions

1. The point $P(5,12)$ lies on the curve with equation $y=x^{2}-4 x+7$.

Find the equation of the tangent to this curve at P.
2. The diagram shows the curve with equation $y=f(x)$, where
$f(x)=k x(x+a)(x+b)$.
The curve passes through $(-1,0),(0,0),(1,2)$ and $(2,0)$.

Find the values of a, b and k.
3. Evaluate $\int_{1}^{2} \frac{1}{6} x^{-2} d x$.
4. For the function $f(x)=2-3 \sin \left(x-\frac{\pi}{3}\right)$ in the interval $0 \leq x<2 \pi$, determine which two of the following statements are true and justify your answer.

Statement A The maximum value of $f(x)$ is -1.

Statement B The maximum value of $f(x)$ is 5 .

Statement C The maximum value occurs when $x=\frac{5 \pi}{6}$.
Statement D The maximum value occurs when $x=\frac{11 \pi}{6}$.
5. For the polynomial, $x^{3}-4 x^{2}+a x+b$

- $x-1$ is a factor
- $\quad-12$ is the remainder when it is divided by $x-2$
(a) Determine the values of a and b.
(b) Hence solve $x^{3}-4 x^{2}+a x+b=0$.

6. (a) Find the equation of l_{1}, the perpendicular bisector of the line joining $P(3,-3)$ and $Q(-1,9)$.
(b) Find the equation of l_{2} which is parallel to $P Q$ and passes through $R(1,-2)$.
(c) Find the point of intersection of l_{1} and l_{2}.
(d) Hence find the shortest distance between PQ and l_{2}.
7. (a) Solve $\cos 2 x^{\circ}-3 \cos x^{\circ}+2=0$ for $0 \leq x<360$.
(b) Hence solve $\cos 4 x^{\circ}-3 \cos 2 x^{\circ}+2=0$ for $0 \leq x<360$.
8. The diagram below shows the graph of a quartic $y=h(x)$, with stationary points at $x=0$ and $x=2$.

On separate diagrams sketch the graphs of:
(a) $y=2-h(x)$.
(b) $y=h^{\prime}(x)$.
9. The expression $\cos 4 x-\sqrt{3} \sin 4 x$ can be written in the form $k \cos (4 x+a)$ where $k>0$ and $0 \leq a \leq 2 \pi$.
(a) Calculate the values of k and a.
(b) Find the points of intersection of the graph of $y=\cos 4 x-\sqrt{3} \sin 4 x$ with the x axis, in the interval $0 \leq x \leq \frac{\pi}{2}$.
10. The gradient of a tangent to a curve is given by $\frac{d y}{d x}=3 \cos 2 x$.

The curve passes through the point $\left(\frac{7 \pi}{6}, \sqrt{3}\right)$. Find y in terms of x.
11. Functions f and g are defined on suitable domains by $f(x)=x^{3}-1$ and $g(x)=3 x+1$.
(a) Find an expression for $k(x)$, where $k(x)=g(f(x))$.
(b) If $h(k(x))=x$, find an expression for $h(x)$.

EP30/H/01

Mathematics Paper 1
 (Non-Calculator)

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Exemplar Question Paper.

> The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
> Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored-out or erased working which has not been replaced should be marked where still legible. However, if the scored-out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in solutions
- a repeated error within a question

Definitions of Mathematics-specific command words used in this Paper are:

Determine: obtain an answer from given facts, figures or information;
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$;

Express: use given information to rewrite an expression in a specified form;
Find: obtain an answer showing relevant stages of working;
Hence: use the previous answer to proceed;
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used;

Identify: provide an answer from a number of possibilities;
Justify: show good reason(s) for the conclusion(s) reached;

Show that: use mathematics to prove something, eg that a statement or given value is correct - all steps, including the required conclusion, must be shown;

Sketch: give a general idea of the required shape or relationship and annotate with all relevant points and features;

Solve: obtain the answer(s) using algebraic and/or numerical and/or graphical methods.

Detailed Marking Instructions for each question

Qu	Expected response (Give one mark for each •)	Max mark	Additional guidance (Illustration of evidence for awarding a mark at each •)
1	$y-12=6(x-5)$ -1 know to differentiate - ${ }^{2}$ calculate gradient - ${ }^{3}$ state equation of tangent	3	- ${ }^{1} 2 x-4$ $\bullet^{2} 6$ - $y-12=6(x-5)$
2	$a=1, b=-2$ and $k=-1$ - ${ }^{1}$ interpret a and b - ${ }^{2}$ know to substitute (1, 2) ${ }^{3}$ state the value of k	3	$\bullet^{1} a=1, b=-2$ or $a=-2, b=1$ -2 $2=k \times 1 \times(1+1) \times(1-2)$ $\bullet^{3}-1$
3	$\frac{1}{12}$ $\bullet{ }^{1}$ complete integration - ${ }^{2}$ substitute limits - ${ }^{3}$ evaluate	3	$\begin{aligned} & \cdot \frac{1}{6} x^{-1} \\ & \bullet^{2}\left(-\frac{1}{6 \times 2}\right)-\left(-\frac{1}{6 \times 1}\right) \\ & \bullet^{3} \frac{1}{12} \end{aligned}$
4	Statements B and D are true. - ${ }^{1}$ statements B and D correct -2 calculate maximum value ${ }^{3}$ calculate value of x	3	${ }^{1} B$ and D $\bullet^{2} \max$ is $2-3 \times-1$ or $\begin{aligned} & f\left(\frac{11 \pi}{6}\right)=2-3 \sin \left(\frac{11 \pi}{6}-\frac{\pi}{3}\right)=2-3 \sin \left(\frac{3 \pi}{2}\right)=5 \\ & \bullet^{3} x-\frac{\pi}{3}=\frac{3 \pi}{2} \Rightarrow x=\frac{3 \pi}{2}+\frac{\pi}{3} \Rightarrow x=\frac{11 \pi}{6} \end{aligned}$

6	$\sqrt{\frac{5}{2}}$	2	
	${ }^{\text {- }}{ }^{0}$ identify appropriate points - ${ }^{11}$ calculate distance		- ${ }^{10}(1,3)$ and $\left(-\frac{1}{2}, \frac{5}{2}\right)$ - $11 \sqrt{\frac{5}{2}}$ accept $\frac{\sqrt{10}}{2}$ or $\sqrt{2 \cdot 5}$
Notes	6 \bullet^{10} and \bullet^{11} are only available for considering the distance between the midpoint of PQ and the candidate's answer from (c) or for considering the perpendicular distance from P or Q to l_{2}. 7 At least one coordinate at \bullet^{10} stage must be a fraction for \bullet^{11} to be available. 8\quad There should only be one calculation of a distance to gain $\bullet^{11 .}$		
7 (a)	- ${ }^{1}$ know to use double angle formula \bullet^{2} express as a quadratic in $\cos x^{\circ}$ - ${ }^{3}$ start to solve - ${ }^{4}$ reduce to equations in $\cos x^{\circ}$ only - ${ }^{5}$ process solutions in given domain	5	Method 1: Using factorisation - ${ }^{1} 2 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} $\left.\bullet^{2} \quad 2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0\right\}$ $=0$ must appear at $\bullet^{3}\left(2 \cos x^{\circ}-1\right)\left(\cos x^{\circ}-1\right)$ either of these lines to gain \bullet^{2} Method 2: Using quadratic formula - ${ }^{1} 2 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} - $2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0$ stated explicitly - $\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times 1}}{2 \times 2}$ In both methods: $\bullet^{4} \cos x^{\circ}=\frac{1}{2}$ and $\cos x^{\circ}=1$ $\bullet^{5} 0,60,300$ Candidates who include 360 lose \bullet^{5}. or $0^{4} \cos x=1$ and $x=0$ \bullet - $\cos x^{\circ}=\frac{1}{2}$ and $x=60$ or 300 Candidates who include 360 lose \bullet^{5}.
Notes	$-{ }^{1}$ is not available for simply stating that $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ with no further working. In the event of $\cos ^{2} x-\sin ^{2} x$ or $1-2 \sin ^{2} x$ being substituted for $\cos 2 x, \bullet^{1}$ cannot		

Notes	$\left.\begin{array}{l}1 \begin{array}{ll}\text { All graphs must include both the } x \text { and } y \text { axes (labelled or unlabelled), however } \\ \text { the origin need not be labelled. }\end{array} \\ 2\end{array} \begin{array}{l}\text { No marks are available unless a graph is attempted. } \\ 3\end{array} \begin{array}{l}\text { No marks are available to a candidate who makes several attempts at a graph on } \\ \text { the same diagram, unless it is clear which is the final graph. }\end{array}\right]$A linear graph gains no marks in both (a) and (b). 5For \bullet^{3} "transformed" means a reflection followed by a translation. 6 7\bullet^{1} and \bullet^{2} apply to the entire curve. A reflection in any line parallel to the y-axis does not gain \bullet^{1} or \bullet^{3}. 8\quadA translation other than $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ does not gain \bullet^{2} or \bullet^{3}.		
8 (b)	 - ${ }^{4}$ identify roots - ${ }^{5}$ interpret point of inflection - ${ }^{6}$ complete cubic curve	${ }^{4} 0$ and 2 only - ${ }^{5}$ turning point at $(2,0)$ - ${ }^{6}$ cubic passing through origin with negative gradient	
9 (a)	$k=2$ and $a=\frac{\pi}{3}$ - ${ }^{1}$ use appropriate compound angle formula -2 compare coefficients ${ }^{3}{ }^{3}$ process k $-{ }^{4}$ process a	4	
			${ }^{1} k \cos \mathrm{~A} \cos \mathrm{~B}-k \sin \mathrm{~A} \sin \mathrm{~B}$ stated explicitly $\bullet^{2} k \cos a=1$ and $k \sin a=\sqrt{3}$ stated explicitly - ${ }^{3} 2$ (do not accept $\sqrt{4}$) $\bullet 4 \frac{\pi}{3}$ but must be consistent with \bullet^{2}
Notes	1 Treat $k \cos \mathrm{~A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{B}$ as bad form only if the equations at the \bullet^{2} stage both contain k. 2 $2 \cos \mathrm{~A} \cos \mathrm{~B}-2 \sin \mathrm{~A} \sin \mathrm{~B}$ or $2(\cos \mathrm{~A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{B})$ is acceptable for \bullet^{1} and \bullet^{3}. 3 Accept $k \cos a=1$ and $-k \sin a=-\sqrt{3}$ for \bullet^{2}. 4 \bullet^{2} is not available for $k \cos 4 x=1$ and $k \sin 4 x=\sqrt{3}$, however, \bullet^{4} is still available. 6 \bullet^{4} is only available for a single value of a. Candidates who work in degrees and do not convert to radian measure in (a) do not gain \bullet^{4}.		

		$7 \quad$ Candidates may use any form of the wave equation for \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \cos (4 x+a)$.		
9	(b)	$\left(\frac{\pi}{24}, 0\right)\left(\frac{7 \pi}{24}, 0\right)$	3	
		$\cdot{ }^{5}$ strategy for finding roots - ${ }^{6}$ start to solve for multiple angles ${ }^{-7}$ state both roots in given domain		- ${ }^{5} 2 \cos \left(4 x+\frac{\pi}{3}\right)=0$ or $\sqrt{3} \sin 4 x=\cos 4 x$ - ${ }^{6} 4 x=\left(\frac{\pi}{2}-\frac{\pi}{3}\right),\left(\frac{3 \pi}{2}-\frac{\pi}{3}\right) \ldots$ - $7 \frac{\pi}{24}, \frac{7 \pi}{24}$
Notes		$8 \quad$ Candidates should only be penalised once for leaving their answer in degrees in (a) and (b). 9 If the expression used in (b) is not consistent with (a) then only \bullet^{6} and \bullet^{7} are available. 10 Correct roots without working cannot gain \bullet^{6} but will gain \bullet^{7}. 11 Candidates should only be penalised once for not simplifying $\sqrt{4}$ in (a) and (b).		
10		$y=\frac{3}{2} \sin 2 x+\frac{\sqrt{3}}{4}$	4	
		- ${ }^{1}$ know to integrate \bullet^{2} substitute $\left(\frac{7 \pi}{6}, \sqrt{3}\right)$ - ${ }^{3}$ use exact values ${ }^{4}$ express y in terms of x		- $\frac{3}{2} \sin 2 x+\ldots$ -2 $\sqrt{3}=\frac{3}{2} \sin \left(2 \times \frac{7 \pi}{6}\right)+c$ - $\sqrt{3}=\frac{3}{2} \times\left(\frac{\sqrt{3}}{2}\right)+c$ - $4 y=\frac{3}{2} \sin 2 x+\frac{\sqrt{3}}{4}$
11	(a)	$3\left(x^{3}-1\right)+1$	2	
		- ${ }^{1}$ interpret notation - ${ }^{2}$ complete process		$\begin{aligned} & \bullet^{1} g\left(x^{3}-1\right) \\ & \bullet^{2} 3\left(x^{3}-1\right)+1 \end{aligned}$

11	(b)	$h(x)=\sqrt[3]{\frac{x+2}{3}}$	3	
		\bullet^{3} start to rearrange for $x=$		- $3 x^{3}=y+2$
		- ${ }^{4}$ rearrange		$\bullet^{4} x=\sqrt[3]{\frac{y+2}{3}}$
		- ${ }^{5}$ write in functional form: $h(x)=\text { or } y=$		${ }^{5} h(x)=\sqrt[3]{\frac{x+2}{3}}$

[END OF EXEMPLAR MARKING INSTRUCTIONS]

EP30/H/02

Date - Not applicable
Duration - 1 hour and 30 minutes

Total marks - 70
Attempt ALL questions.
You may use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\mathbf{a . b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. A sequence is defined by $u_{n+1}=-\frac{1}{2} u_{n}$ with $u_{0}=-16$.
(a) Determine the values of u_{1} and u_{2}.
(b) A second sequence is given by $4,5,7,11, \ldots$

It is generated by the recurrence relation $v_{n+1}=p v_{n}+q$ with $v_{1}=4$.
Find the values of p and q.
(c) Either the sequence in (a) or the sequence in (b) has a limit.
(i) Calculate this limit.
(ii) Why does this other sequence not have a limit?
2. (a) Relative to a suitable set of coordinate axes, Diagram 1 shows the line $2 x-y+5=0$ intersecting the circle $x^{2}+y^{2}-6 x-2 y-30=0$ at the points P and Q .

Find the coordinates of P and Q .
(b) Diagram 2 shows the circle from (a) and a second congruent circle, which also passes through P and Q .

Determine the equation of this second circle.
3. Find the value of p such that the equation $x^{2}+(p+1) x+9=0$ has no real roots.
4. The line with equation $y=2 x+3$ is a tangent to the curve with equation $y=x^{3}+3 x^{2}+2 x+3$ at $\mathrm{A}(0,3)$, as shown.

The line meets the curve again at B $(-3,-3)$. Find the area enclosed by the line and the curve.
5. $D, O A B C$ is a square-based pyramid as shown.

0 is the origin and $\mathrm{OA}=4$ units.
M is the mid-point of $O A$.
$\overrightarrow{O D}=2 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}$
(a) Express $\overrightarrow{\mathrm{OB}}$ in terms of \mathbf{i} and \mathbf{j} and \mathbf{k}.
(b) Express $\overrightarrow{\mathrm{DB}}$ and $\overrightarrow{\mathrm{DM}}$ in component form.
(c) Find the size of angle BDM.
6. An equilateral triangle with sides of length 3 units is shown.

Vector \mathbf{r} is 2 units long and is perpendicular to both vectors \mathbf{p} and \mathbf{q}.
Calculate the value of the scalar product $\mathbf{p} \cdot(\mathbf{p}+\mathbf{q}+\mathbf{r})$.
7. The concentration of the pesticide, Xpesto, in soil can be modelled by the equation.

$$
P_{t}=P_{0} e^{-k t}
$$

where:

- P_{0} is the initial concentration;
- P_{t} is the concentration at time t;
- t is the time, in days, after the application of the pesticide.

Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.
(a) If the half-life of Xpesto is 25 days, find the value of k to 2 significant figures.

On all Xpesto packaging, the manufacturer states that 80 days after application the concentration of Xpesto in the soil will have decreased by over 90%.
(b) Is this statement correct? Justify your answer.
8. Given that $\int_{\frac{\pi}{8}}^{a} 5 \sin \left(4 x-\frac{\pi}{2}\right) d x=\frac{10}{4}, 0 \leq a<\frac{\pi}{2}$, calculate the value of a.
9. A manufacturer is asked to design an open-ended shelter, as shown:

The frame of the shelter is to be made of rods of two different lengths:

- x metres for top and bottom edges;
- y metres for each sloping edge.

The total length, L metres, of the rods used in a shelter is given by:

$$
L=3 x+\frac{48}{x}
$$

To minimise production costs, the total length of rods used for a frame should be as small as possible.
(a) Find the value of x for which L is a minimum.

The rods used for the frame cost $£ 8.25$ per metre.
The manufacturer claims that the minimum cost of a frame is less than $£ 195$.
(b) Is this claim correct? Justify your answer.
10. Acceleration is defined as the rate of change of velocity.

An object is travelling in a straight line. The velocity, $v \mathrm{~m} / \mathrm{s}$, of this object, t seconds after the start of the motion, is given by $v(t)=8 \cos \left(2 t-\frac{\pi}{2}\right)$.
(a) Find a formula for $a(t)$, the acceleration of this object, t seconds after the start of the motion.
(b) Determine whether the velocity of the object is increasing or decreasing when $t=10$.
(c) Velocity is defined as the rate of change of displacement.

Determine a formula for $s(t)$, the displacement of the object, given that $s(t)=4$ when $t=0$.

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Exemplar Question Paper.

> The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
> Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored-out or erased working which has not been replaced should be marked where still legible. However, if the scored-out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in solutions
- a repeated error within a question

Definitions of Mathematics-specific command words used in this Paper are:

Determine: obtain an answer from given facts, figures or information;
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$;

Express: use given information to rewrite an expression in a specified form;
Find: obtain an answer showing relevant stages of working;
Hence: use the previous answer to proceed;
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used;

Identify: provide an answer from a number of possibilities;
Justify: show good reason(s) for the conclusion(s) reached;

Show that: use mathematics to prove something, eg that a statement or given value is correct - all steps, including the required conclusion, must be shown;

Sketch: give a general idea of the required shape or relationship and annotate with all relevant points and features;

Solve: obtain the answer(s) using algebraic and/or numerical and/or graphical methods.

Detailed Marking Instructions for each question

Question			Expected Response (Give one mark for each •)	Max mark	Additional Guidance (Illustration of evidence for
1	(a))	$u_{1}=8$ and $u_{2}=-4$	1	- ${ }^{1} u_{1}=8$ and $u_{2}=-4$
			$\bullet{ }^{1}$ find terms of sequence		
1	(b)		$p=2$ or $q=-3$	3	
			- ${ }^{2}$ interpret sequence - ${ }^{3}$ solve for one variable - ${ }^{4}$ state second variable		- ${ }^{2}$ eg $4 p+q=5$ and $5 p+q=7$ - $p=2$ or $q=-3$ - ${ }^{4} q=-3$ or $p=2$
Notes			$\begin{array}{ll} \hline 1 & \text { Candidates may use } 7 p+q=11 \text { as one of their equations at } \bullet^{2} . \\ 2 & \text { Treat equations like } p 4+q=5 \text { or } p(4)+q=5 \text { as bad form. } \\ 3 & \text { Candidates should not be penalised for using } u_{n+1}=p u_{n}+q . \end{array}$		
1	(c)	(i)	$l=0,-1<p<1$	3	
			${ }^{5}$ know how to find a valid limit - ${ }^{6}$ calculate a valid limit only \bullet^{7} state reason		- $l=-\frac{1}{2} l$ or $l=\frac{0}{1-\left(-\frac{1}{2}\right)}$ ${ }^{6} l=0$ ${ }^{\text {7 }}$ outside interval $-1<p<1$
Notes			4 Just stating that $l=a l+b$ or $l=\frac{b}{1-a}$ is not sufficient for \bullet^{5}. 5 Any calculations based on formulae masquerading as a limit rule cannot gain \bullet^{5} and \bullet^{6}. 6 For candidates who use " $b=0$ ", \bullet^{6} is only available to those who simplify $\underline{0}$ to 0 . $7 \quad$ Accept $2>1$ or $p>1$ for \bullet^{7}. This may be expressed in words. $8 \quad$ Candidates who use a without reference to p or 2 cannot gain \bullet^{7}.		

2	(a)	$\mathrm{P}(-3,-1) \mathrm{Q}(1,7)$	6	
		- ${ }^{1}$ rearrange linear equation $\bullet 2$ substitute into circle - ${ }^{3}$ express in standard form - ${ }^{4}$ start to solve - ${ }^{5}$ state roots - ${ }^{6}$ determine corresponding y coordinates		Substituting for y - ${ }^{1} y=2 x+5$ stated or implied by \bullet^{2} - ${ }^{2} \ldots(2 x+5)^{2} \ldots-2(2 x+5) \ldots$ $\left.\bullet^{3} \quad 5 x^{2}+10 x-15=0\right\}=0$ must appear at the \bullet^{3} - ${ }^{4}$ eg $\quad 5(x+3)(x-1)$ or \bullet^{4} stage to gain \bullet^{3} - ${ }^{5} x=-3$ and $x=1$ - ${ }^{6} y=-1$ and $y=7$ Substituting for x $\bullet^{1} x=\frac{y-5}{2}$ stated or implied by \bullet^{2} $\bullet^{2}\left(\frac{y-5}{2}\right)^{2} \ldots-6\left(\frac{y-5}{2}\right) \ldots$ $\left.\begin{array}{ll}\bullet^{3} & 5 y^{2}-30 y-35=0 \\ \bullet{ }^{4} \text { eg } & 5(y+1)(y-7)\end{array}\right\} \begin{aligned} & =0 \text { must appear at the } \bullet^{3} \\ & \text { or } \bullet^{4} \text { stage to gain } \bullet^{3}\end{aligned}$ - $5=-1$ and $y=7$ - ${ }^{6} x=-3$ and $x=1$
Notes		1At \bullet^{4} the quadratic must lead to two real distinct roots for \bullet^{5} and \bullet^{6} to be2available. 3\quadCross marking is available here for \bullet^{5} and \bullet^{6}. Candidates do not need to distinguish between points P and Q .		

2	(b)	$(x+5)^{2}+(y-5)^{2}=40$ - ${ }^{7}$ centre of original circle ${ }^{8}{ }^{8}$ radius of original circle Method 1: Using midpoint $-{ }^{9}$ midpoint of chord - ${ }^{10}$ evidence for finding new centre - ${ }^{11}$ centre of new circle - ${ }^{12}$ equation of new circle Method 2: Stepping out using P and Q - ${ }^{9}$ evidence of C_{1} to P or C_{1} to Q - ${ }^{10}$ evidence of Q to C_{2} or P to C_{2} - ${ }^{11}$ centre of new circle - ${ }^{12}$ equation of new circle	6	- ${ }^{7}(3,1)$ $\bullet^{8} \sqrt{40}$ accept $r^{2}=40$ Method 1: Using midpoint ${ }^{\bullet}{ }^{9}(-1,3)$ ${ }^{10}$ eg stepping out or midpoint formula $\bullet^{11}(-5,5)$ - ${ }^{12}(x+5)^{2}+(y-5)^{2}=40$ Method 2: Stepping out using P and Q - ${ }^{9}$ eg stepping out or vector approach - ${ }^{10}$ eg stepping out or vector approach $\bullet^{11}(-5,5)$ $\bullet^{12}(x+5)^{2}+(y-5)^{2}=40$
Not		4 The evidence for \bullet^{7} 5 Centre $(-5,5)$ withou in method 2 may still working in method 1 6 $\bullet^{10}, \bullet^{11}$ or \bullet^{12}. 7 The centre must have 8 Do not accept, eg $\sqrt{40}$ The evidence for \bullet^{8} equation of the secon		may appear in (a). king in method 1 may still gain ${ }^{12}$ but not \bullet^{10} or \bullet^{11}, \bullet^{12} but not $\bullet^{9}, \bullet^{10}$ or \bullet^{11}. Any other centre without not gain $\bullet^{10}, \bullet^{11}$ or \bullet^{12}, in method 2 does not gain \bullet^{9}, clearly indicated before it is used at the \bullet^{12} stage. 39.69 , or any other approximations for \bullet^{12}. t appear until the candidate states the radius or le.
3		$-7<p<5$ ${ }^{-1}$ substitute into discriminant - ${ }^{2}$ know condition for no real roots - ${ }^{3}$ factorise - ${ }^{4}$ solve for p	4	$\begin{aligned} & \bullet(p+1)^{2}-4 \times 1 \times 9 \\ & \bullet^{2} b^{2}-4 a c<0 \\ & \bullet(p-5)(p+7)<0 \\ & \bullet-7<p<5 \end{aligned}$

4		$\frac{27}{4}$ - ${ }^{1}$ know to integrate and interpret limits - ${ }^{2}$ use "upper-lower" - ${ }^{3}$ integrate - ${ }^{4}$ substitute limits - ${ }^{5}$ evaluate area	5	${ }^{1} \int_{-3}^{0} \ldots \ldots \ldots$ - $\int_{-3}^{0}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$ - $\frac{1}{4} x^{4}+x^{3}$ - ${ }^{4} 0-\left(\frac{1}{4}(-3)^{4}+(-3)^{3}\right)$ - $5 \frac{27}{4}$ units 2
Notes		```Where a candidate differentiates one or more terms at \bullet 茥 then \bullet4 and \bullet '5 are not available. \\ Candidates who substitute without integrating at \(\bullet^{2}\) do not gain \(\bullet^{3}, \bullet^{4}\) and \(\bullet^{5}\). Candidates must show evidence that they have considered the upper limit 0 at \({ }^{4}\). \\ Where candidates show no evidence for both \(\bullet^{3}\) and \(\bullet^{4}\), but arrive at the correct area, then \(\bullet^{3}, \bullet^{4}\) and \(\bullet^{5}\) are not available. \\ The omission of \(d x\) at \(\bullet^{2}\) should not be penalised.```		
5	(a)	$\overrightarrow{\mathrm{OB}}=4 \mathbf{i}+4 \mathbf{j}$ - ${ }^{1}$ state $\overrightarrow{O B}$ in unit vector form	1	${ }^{1} 4 \mathbf{i}+4 \mathbf{j}$
5	(b)	$\begin{aligned} & \overrightarrow{\mathrm{DB}}=\left(\begin{array}{c} 2 \\ 2 \\ -6 \end{array}\right) \\ & \overrightarrow{\mathrm{DM}}=\left(\begin{array}{c} 0 \\ -2 \\ -6 \end{array}\right) \end{aligned}$	3	
		- ${ }^{2}$ state components of $\overrightarrow{D B}$ - ${ }^{3}$ state coordinates of M - ${ }^{4}$ state components of $\overline{D M}$		$\bullet^{2}\left(\begin{array}{c} 2 \\ 2 \\ -6 \end{array}\right)$ ${ }^{3}(2,0,0)$ stated, or implied by \bullet^{4} $\cdot 4\left(\begin{array}{c} 0 \\ -2 \\ -6 \end{array}\right)$

[END OF EXEMPLAR MARKING INSTRUCTIONS]

