X747/76/11
Mathematics
Paper 1
(Non-Calculator)
WEDNESDAY, 20 MAY
9:00AM-10:10AM

Total marks - 60

Attempt ALL questions.
You may NOT use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Answers obtained by readings from scale drawings will not receive any credit.
Write your answers clearly in the spaces in the answer booklet provided. Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:
The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

Attempt ALL questions

Total marks - 60

1. Vectors $\mathbf{u}=8 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{v}=-3 \mathbf{i}+t \mathbf{j}-6 \mathbf{k}$ are perpendicular.

Determine the value of t.
2. Find the equation of the tangent to the curve $y=2 x^{3}+3$ at the point where $x=-2$.
3. Show that $(x+3)$ is a factor of $x^{3}-3 x^{2}-10 x+24$ and hence factorise $x^{3}-3 x^{2}-10 x+24$ fully.
4. The diagram shows part of the graph of the function $y=p \cos q x+r$.

Write down the values of p, q and r.
5. A function g is defined on \mathbb{R}, the set of real numbers, by $g(x)=6-2 x$.
(a) Determine an expression for $g^{-1}(x)$.
(b) Write down an expression for $g\left(g^{-1}(x)\right)$.
6. Evaluate $\log _{6} 12+\frac{1}{3} \log _{6} 27$.
7. A function f is defined on a suitable domain by $f(x)=\sqrt{x}\left(3 x-\frac{2}{x \sqrt{x}}\right)$. Find $f^{\prime}(4)$.
8. ABCD is a rectangle with sides of lengths x centimetres and $(x-2)$ centimetres, as shown.

If the area of $A B C D$ is less than $15 \mathrm{~cm}^{2}$, determine the range of possible values of x.
9. A, B and C are points such that AB is parallel to the line with equation $y+\sqrt{3} x=0$ and BC makes an angle of 150° with the positive direction of the x-axis.
Are the points A, B and C collinear?
10. Given that $\tan 2 x=\frac{3}{4}, 0<x<\frac{\pi}{4}$, find the exact value of
(a) $\cos 2 x$
(b) $\cos x$.
11. $\mathrm{T}(-2,-5)$ lies on the circumference of the circle with equation

$$
(x+8)^{2}+(y+2)^{2}=45 .
$$

(a) Find the equation of the tangent to the circle passing through T .
(b) This tangent is also a tangent to a parabola with equation $y=-2 x^{2}+p x+1-p$, where $p>3$.

Determine the value of p.
12. The diagram shows part of the graph of $y=a \cos b x$.

The shaded area is $\frac{1}{2}$ unit 2.

What is the value of $\int_{0}^{\frac{3 \pi}{4}}(a \cos b x) d x$?
13. The function $f(x)=2^{x}+3$ is defined on \mathbb{R}, the set of real numbers.

The graph with equation $y=f(x)$ passes through the point $\mathrm{P}(1, b)$ and cuts the y-axis at Q as shown in the diagram.

(a) What is the value of b ?
(b) (i) Copy the above diagram.

On the same diagram, sketch the graph with equation $y=f^{-1}(x)$.
(ii) Write down the coordinates of the images of P and Q .
(c) $\mathrm{R}(3,11)$ also lies on the graph with equation $y=f(x)$.

Find the coordinates of the image of R on the graph with equation $y=4-f(x+1)$.
14. The circle with equation $x^{2}+y^{2}-12 x-10 y+k=0$ meets the coordinate axes at exactly three points.
What is the value of k ?
15. The rate of change of the temperature, $T^{\circ} \mathrm{C}$ of a mug of coffee is given by

$$
\frac{d T}{d t}=\frac{1}{25} t-k, 0 \leq \mathrm{t} \leq 50
$$

- t is the elapsed time, in minutes, after the coffee is poured into the mug
- k is a constant
- initially, the temperature of the coffee is $100^{\circ} \mathrm{C}$
- 10 minutes later the temperature has fallen to $82^{\circ} \mathrm{C}$.

Express T in terms of t.

X747/76/12
Mathematics
Paper 2
WEDNESDAY, 20 MAY
10:30AM - 12:00 NOON

Total marks - 70

Attempt ALL questions.

You may use a calculator

Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Answers obtained by readings from scale drawings will not receive any credit.
Write your answers clearly in the spaces in the answer booklet provided. Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:
The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

Attempt ALL questions

Total marks - 70

1. The vertices of triangle $A B C$ are $A(-5,7), B(-1,-5)$ and $C(13,3)$ as shown in the diagram.
The broken line represents the altitude from C.

(a) Show that the equation of the altitude from C is $x-3 y=4$.
(b) Find the equation of the median from B.
(c) Find the coordinates of the point of intersection of the altitude from C and the median from B.
2. Functions f and g are defined on suitable domains by

$$
f(x)=10+x \text { and } g(x)=(1+x)(3-x)+2
$$

(a) Find an expression for $f(g(x))$.
(b) Express $f(g(x))$ in the form $p(x+q)^{2}+r$.
(c) Another function h is given by $h(x)=\frac{1}{f(g(x))}$.

What values of x cannot be in the domain of h ?
3. A version of the following problem first appeared in print in the 16th Century.

A frog and a toad fall to the bottom of a well that is 50 feet deep.
Each day, the frog climbs 32 feet and then rests overnight. During the night, it slides down $\frac{2}{3}$ of its height above the floor of the well.
The toad climbs 13 feet each day before resting.
Overnight, it slides down $\frac{1}{4}$ of its height above the floor of the well.

Their progress can be modelled by the recurrence relations:

$$
\begin{array}{lll}
\text { - } & f_{n+1}=\frac{1}{3} f_{n}+32, & f_{1}=32 \\
\text { - } & t_{n+1}=\frac{3}{4} t_{n}+13, & t_{1}=13
\end{array}
$$

where f_{n} and t_{n} are the heights reached by the frog and the toad at the end of the nth day after falling in.
(a) Calculate t_{2}, the height of the toad at the end of the second day.
(b) Determine whether or not either of them will eventually escape from the well.
4. A wall plaque is to be made to commemorate the 150th anniversary of the publication of "Alice's Adventures in Wonderland".
The edges of the wall plaque can be modelled by parts of the graphs of four quadratic functions as shown in the sketch.

- $f(x)=\frac{1}{4} x^{2}-\frac{1}{2} x+3$
- $g(x)=\frac{1}{4} x^{2}-\frac{3}{2} x+5$
- $h(x)=\frac{3}{8} x^{2}-\frac{9}{4} x+3$
- $k(x)=\frac{3}{8} x^{2}-\frac{3}{4} x$
(a) Find the x-coordinate of the point of intersection of the graphs with equations $y=f(x)$ and $y=g(x)$.

The graphs of the functions $f(x)$ and $h(x)$ intersect on the y-axis.
The plaque has a vertical line of symmetry.
(b) Calculate the area of the wall plaque.
5. Circle C_{1} has equation $x^{2}+y^{2}+6 x+10 y+9=0$.

The centre of circle C_{2} is $(9,11)$.
Circles C_{1} and C_{2} touch externally.

(a) Determine the radius of C_{2}.

A third circle, C_{3}, is drawn such that:

- both C_{1} and C_{2} touch C_{3} internally
- the centres of C_{1}, C_{2} and C_{3} are collinear.
(b) Determine the equation of C_{3}.

6. Vectors \mathbf{p}, \mathbf{q} and \mathbf{r} are represented on the diagram as shown.

- BCDE is a parallelogram
- $A B E$ is an equilateral triangle
- $|\mathbf{p}|=3$
- Angle $\mathrm{ABC}=90^{\circ}$

(a) Evaluate $\mathbf{p} \cdot(\mathbf{q}+\mathbf{r})$.
(b) Express $\overrightarrow{\mathrm{EC}}$ in terms of \mathbf{p}, \mathbf{q} and \mathbf{r}.
(c) Given that $\overrightarrow{A E} \cdot \overrightarrow{E C}=9 \sqrt{3}-\frac{9}{2}$, find $|\mathbf{r}|$.

7. (a) Find $\int(3 \cos 2 x+1) d x$.
(b) Show that $3 \cos 2 x+1=4 \cos ^{2} x-2 \sin ^{2} x$.
(c) Hence, or otherwise, find $\int\left(\sin ^{2} x-2 \cos ^{2} x\right) d x$.
8. A crocodile is stalking prey located 20 metres further upstream on the opposite bank of a river.
Crocodiles travel at different speeds on land and in water.
The time taken for the crocodile to reach its prey can be minimised if it swims to a particular point, P, x metres upstream on the other side of the river as shown in the diagram.

The time taken, T, measured in tenths of a second, is given by

$$
T(x)=5 \sqrt{36+x^{2}}+4(20-x)
$$

(a) (i) Calculate the time taken if the crocodile does not travel on land.
(ii) Calculate the time taken if the crocodile swims the shortest distance possible.
(b) Between these two extremes there is one value of x which minimises the time taken. Find this value of x and hence calculate the minimum possible time.
9. The blades of a wind turbine are turning at a steady rate.

The height, h metres, of the tip of one of the blades above the ground at time, t seconds, is given by the formula

$$
h=36 \sin (1 \cdot 5 t)-15 \cos (1 \cdot 5 t)+65 .
$$

Express $36 \sin (1 \cdot 5 t)-15 \cos (1 \cdot 5 t)$ in the form

$$
k \sin (1 \cdot 5 t-a), \text { where } k>0 \text { and } 0<a<\frac{\pi}{2}
$$

and hence find the two values of t for which the tip of this blade is at a height of 100 metres above the ground during the first turn.

2015 Mathematics

New Higher Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:
1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 One mark is available for each • There are no half marks.
3 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.

6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, eg

Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.	$x^{2}+5 x+7=9 x+4$	$x-4 x+3=0$ $(x-3)(x-1)=0$
$x=1$ or 3		

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve
Illustrative Scheme: $\bullet^{5} \quad x=2, x=-4$

Markers should choose whichever method benefits the candidate, but not a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

$$
\begin{aligned}
& \text { Examples: } \frac{15}{12} \text { should be simplified to } \frac{5}{4} \text { or } 1 \frac{1}{4} \quad \frac{43}{1} \text { should be simplified to } 43 \\
& \frac{15}{0.3} \text { should be simplified to } 50 \\
& \sqrt{64} \text { must be simplified to } 8
\end{aligned}
$$

9 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

10 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form (bad form only becomes bad form if subsequent working is correct), e.g.
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$
written as

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& 2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2 \\
& 2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \text { gains full credit }
\end{aligned}
$$

- Repeated error within a question, but not between questions.

11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions.
All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Detailed Marking Instructions for each question

Question	Generic Scheme	Illustrative Scheme	Max Mark
1.			
	- ${ }^{1}$ equate scalar product to zero ${ }^{2}$ state value of t	$\begin{aligned} & \bullet^{1}-24+2 t+6=0 \\ & \bullet^{2} t=9 \end{aligned}$	2
Notes:			
$\begin{aligned} & \text { Commonl: } \\ & \text { Candidat } \\ & -24+2 t+ \\ & t=\frac{17}{2} \text { or } \end{aligned}$	Observed Responses: $\begin{array}{ll} =-1 & \bullet^{1} \times \\ & \bullet^{2} \sqrt{ } 1 \end{array}$		
2.			
	${ }^{1}$ know to and differentiate \cdot^{2} evaluate $\frac{d y}{d x}$ - ${ }^{3}$ evaluate y-coordinate - ${ }^{4}$ state equation of tangent	$\begin{aligned} & \cdot{ }^{1} 6 x^{2} \\ & \bullet^{2} 24 \\ & \cdot{ }^{3}-13 \\ & \cdot{ }^{4} y=24 x+35 \end{aligned}$	4
Notes:			

1. \bullet^{4} is only available if an attempt has been made to find the gradient from differentiation.
2. At mark \bullet^{4} accept $y+13=24(x+2), y-24 x=35$ or any other rearrangement of the equation.
Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
3.			
	- ${ }^{1}$ know to use $x=-3$ ${ }^{2}$ 2 interpret result and state conclusion - ${ }^{3}$ state quadratic factor - ${ }^{4}$ factorise completely	Method 1 - ${ }^{1} \quad(-3)^{3}-3(-3)^{2}-10(-3)+24$ -2 $=0 \therefore(x+3)$ is a factor. Method 2 - ${ }^{1}$ $-3 \left\lvert\, \begin{array}{rrrr}\begin{array}{lll}1 & -3 & -10 \\ & 24 \\ & -3\end{array} & \\ 1 & \\ \end{array}\right.$ -2 $-3 \left\lvert\, \begin{array}{cccr}1 & -3 & -10 & 24 \\ & -3 & 18 & -24 \\ & 1 & -6 & 8\end{array} 0\right.$ remainder $=0 \therefore(x+3)$ is a factor. Method 3 x^{2} - ${ } ^ { 1 } x + 3 \longdiv { x ^ { 3 } - 3 x ^ { 2 } - 1 0 x + 2 4 }$ $x^{3}+3 x^{2}$ - ${ }^{2}=0 \therefore(x+3)$ is a factor. - ${ }^{3} x^{2}-6 x+8$ stated or implied by 0^{4} - ${ }^{4}(x+3)(x-4)(x-2)$	4

1. Communication at \bullet^{2} must be consistent with working at that stage ie a candidate's working must arrive legitimately at 0 before \bullet^{2} is awarded.
2. Accept any of the following for \bullet^{2} :
' $f(-3)=0$ so $(x+3)$ is a factor'
'since remainder is 0 , it is a factor'
the 0 from the table linked to the word 'factor' by eg 'so', 'hence', ' \therefore ', ' \rightarrow ', ' \Rightarrow '
3. Do not accept any of the following for \bullet^{2} :
double underlining the zero or boxing the zero without comment
' $x=3$ is a factor', ' $(x-3)$ is a factor', ' $x=-3$ is a root', ' $(x-3)$ is a root', " $(x+3)$ is a root"
the word 'factor' only, with no link
4. At \bullet^{4} the expression may be written in any order.
5. An incorrect quadratic correctly factorised may gain \bullet^{4}
6. Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate that $b^{2}-4 a c<0$ to gain \bullet^{4}
7. $=0$ must appear at \bullet^{1} or \bullet^{2} for \bullet^{2} to be awarded.
8. For candidates who do not arrive at 0 at the \bullet^{2} stage $\bullet^{2} \bullet^{3} \bullet^{4}$ not available.
9. Do not penalise candidates who attempt to solve a cubic equation. However, within this working there may be evidence of the correct factorisation of the cubic.

Notes:

1. At \bullet^{1} accept any equivalent expression with any 2 distinct variables.

Commonly Observed Responses:

5(b).						
	\bullet^{3} state expression	$\bullet^{3} x$	$\mathbf{1}$			
Notes:						

2. Candidates using method 2 may be awarded \bullet^{3} at line one.
3. For candidates who attempt to find the composite function $g\left(g^{-1}(x)\right)$, accept

$$
6-2\left(\frac{6-x}{2}\right) \text { for } \bullet^{3} .
$$

4. In this case \bullet^{3} may be awarded as follow through where an incorrect $g^{-1}(x)$ is found at \bullet^{2}, provided it includes the variable x.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
9.			
	- ${ }^{1}$ find gradient of $A B$ - ${ }^{2}$ calculate gradient of $B C$ - ${ }^{3}$ interpret results and state conclusion		${ }^{3}$
Notes:			
1. The statement made at \bullet^{3} must be consistent with the gradients or angles found for \bullet^{1} and \bullet^{2}.			
Commonly Observed Responses:			
10(a).			
	- ${ }^{1}$ state value of $\cos 2 x$	- $1 \frac{4}{5}$	1
Notes:			
Commonly Observed Responses:			
Candidate $\cos 2 x=$ $2 \cos ^{2} x-1$ $\cos x=\frac{2}{\sqrt{5}}$	$\begin{aligned} & \bullet^{1} \times \\ & \bullet^{2} \sqrt{\sqrt{2}} \\ & \bullet^{3} \sqrt{ } 1 \end{aligned}$	$\begin{aligned} & \cos ^{2} x=\frac{5}{2} \\ & \cos x=\sqrt{\frac{5}{2}} \quad \bullet^{3} \times \text { invalid answer } \end{aligned}$	
	- ${ }^{2}$ use double angle formula $\cdot{ }^{3}$ evaluate $\cos x$	$\left\lvert\, \begin{aligned} & \text { - } 22 \cos ^{2} x-1=\ldots \\ & -3 \frac{3}{\sqrt{10}}\end{aligned}\right.$	2
Notes:			
1. Ignore the inclusion of $-\frac{3}{\sqrt{10}}$. 2. At \bullet^{2} the double angle formula must be equated to the candidates answer to part (a).			
Commonly Observed Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
11(a).			
	- ${ }^{1}$ state coordinates of centre ${ }^{2}$ find gradient of radius - ${ }^{3}$ state perpendicular gradient - ${ }^{4}$ determine equation of tangent	$\left[\begin{array}{l} \cdot{ }^{1}(-8,-2) \\ \bullet^{2}-\frac{1}{2} \\ 0^{3} 2 \\ 0^{4} y=2 x-1 \end{array}\right.$	4
Notes:			
1. \bullet^{4} is only available as a consequence of trying to find and use a perpendicular gradient. 2. At mark \bullet^{4} accept $y+5=2(x+2), y-2 x=-1, y-2 x+1=0$ or any other rearrangement of the equation.			
Commonly Observed Responses:			

Question	Generic Scheme \quad Illustrative Scheme	Max Mark
11(b).		
		6
Notes:		
1. At \bullet^{6} accept $2 x^{2}+2 x-p x+p-2=0$. 2. At \bullet^{7} accept $a=2, b=(2-p)$, and $c=(p-2)$.		
Commonly Observed Responses:		
Just using $\left\{\begin{array}{r} a=-2 \quad b= \\ b^{2}-4 a c= \\ = \\ p= \\ p= \end{array}\right.$	$c=1-p$ $-4 \times(-2)(1-p)$ $\bullet^{5} \wedge$ $-8 p+8=0$ $\bullet{ }^{7} \sqrt{ } 1$ $\pm \sqrt{8}$ $\bullet \sqrt{ } 2$ $+\sqrt{8}$ as $p>3$ $\bullet^{9} \sqrt{ } 1$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
12.			
	$-{ }^{1}$ interpret integral x-axis - ${ }^{2}$ evaluate		2
Notes:			
1. For candidates who calculate the area as $\frac{3}{2}$ award 1 out of 2 .			

Commonly Observed Responses:

13(a)								
						\bullet calculate b	${ }^{1} 5$	1
Notes:								

Commonly Observed Responses:

13 (b)(i)			
	- ${ }^{2}$ reflecting in the line $y=x$		1

Notes:

1. If the reflected graph cuts the y-axis, \bullet^{2} is not awarded.

Commonly Observed Responses:

2. • ${ }^{4}$ can only be awarded if $(4,0)$ is clearly identified either by their labelling or by their diagram.
3. \bullet^{3} is awarded for the appearance of 4 , or $(4,0)$ or $(0,4)$.
4. • ${ }^{5}$ is awarded for the appearance of $(5,1)$. Ignore any labelling attached to this point.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
15.			
	- ${ }^{1}$ know to integrate - ${ }^{2}$ integrate a term - ${ }^{3}$ complete integration - ${ }^{4}$ find constant of integration - ${ }^{5}$ find value of k ${ }^{6}$ state expression for T	$\begin{aligned} & \bullet \\ & \bullet^{2} \frac{1}{50} t^{2} \ldots \text { or } \ldots-k t \\ & 0^{3} \ldots-k t \text { or } \frac{1}{50} t^{2} \ldots \\ & \bullet^{4} c=100 \\ & 0^{5} k=2 \\ & 6^{6} T=\frac{1}{50} t^{2}-2 t+100 \end{aligned}$	6
Notes:			
1. Accept unsimplified expressions at \bullet^{2} and \bullet^{3} stage. 2. \bullet^{4}, \bullet^{5} and \bullet^{6} are not available for candidates who have not considered the constant of integration. 3. • ${ }^{1}$ may be implied by \bullet^{2}.			
Commonly Observed Responses:			

2015 Mathematics

New Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:
1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 One mark is available for each • There are no half marks.
3 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.

6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.

7 Vertical/horizontal marking
Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve
Illustrative Scheme: © $x=2, x=-4$

- $\quad y=5, y=-7$

Markers should choose whichever method benefits the candidate, but not a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ should be simplified to 43
$\frac{15}{0.3}$ should be simplified to $50 \quad \frac{4 / 5}{3}$ should be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8

The square root of perfect squares up to and including 100 must be known.

9 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

10 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form (bad form only becomes bad form if subsequent working is correct), e.g.

$$
\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)
$$

written as

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& 2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2 \\
& 2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \text { gains full credit }
\end{aligned}
$$

- Repeated error within a question, but not between questions.

11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions.
All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Paper 2

Question
$\mathbf{1 (b)}$
$\bullet{ }^{5}$ calc
\bullet^{6} calc
\bullet^{7} det
Notes
4.6

4. ${ }^{6}$ and \bullet^{\prime} are not available to candidates who do not use a midpoint.
5. \bullet^{7} is only available as a consequence of using a non-perpendicular gradient and a midpoint.
6. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3 .
7. At \bullet^{7} accept $y-(-5)=2(x-(-1)), y-5=2(x-4), y-2 x+3=0$ or any other rearrangement of the equation.

Commonly Observed Responses:

Median through A

$\mathrm{M}_{B C}=(6,-1)$
$m_{A M}=\frac{-8}{11}$
$y+1=\frac{-8}{11}(x-6)$ or $y-7=\frac{-8}{11}(x+5)$
Award 1/3
1(c)
\bullet^{8} calculate x or y coordinate

- ${ }^{9}$ calculate remaining coordinate of the point of intersection

Median through C

$\mathrm{M}_{A B}=(-3,1)$
$m_{C M}=\frac{1}{8}$
$y-3=\frac{1}{8}(x-13)$ or $y-1=\frac{1}{8}(x+3)$
Award 1/3
$\bullet^{8} x=1$ or $y=-1$

- $9=-1$ or $x=1$

2

Notes:

8. If the candidate's 'median' is either a vertical or horizontal line then award 1 out of 2 if both coordinates are correct, otherwise award 0.

Commonly Observed Responses:

For candidates who find the altitude through B in part (b)
$x=-\frac{1}{5}$
$y=-\frac{7}{5}$

$\bullet^{9} \sqrt{1}$

Candidate A

(b) $\begin{aligned} & y-5=2(x-4) \quad \bullet^{7} \downarrow \\ & y=2 x-13 \quad \text {-error }\end{aligned}$
(c) $\begin{aligned} & x-3 y=4 \\ & y=2 x-13\end{aligned}$

Leading to $x=7$ and $y=1$

Question	Generic Scheme	Illustrative Scheme	Max Mark
2 (a)			
- ${ }^{1}$ interpret notation		- ${ }^{1} f((1+x)(3-x)+2)$ stated or implied by ${ }^{2}$	
\bullet^{2} state a correct expression		- ${ }^{2} 10+(1+x)(3-x)+2$ stated or implied by ${ }^{3}$	2
Notes:			
1. \bullet^{1} is not available for $g(f(x))=g(10+x)$ but \bullet^{2} may be awarded for $(1+10+x)(3-(10+x))+2$.			

Commonly Observed Responses:

Candidate A

(b) $=-75-18 x-x^{2}$ or $-x^{2}-18 x-75$

$$
=-\left(x^{2}+18 x\right.
$$

$$
=-(x+9)^{2}
$$

$$
=-(x+9)^{2}+6
$$

Candidate B

$f(g(x))$	
$=10((1+x)-(3-x))+2$	$\bullet^{\bullet} \wedge$

Candidate C

$f(g(x))$	$\bullet^{1} \wedge$
$=10((1+x)(3-x)+2)$	$\bullet^{2} \times$

2 (b)

${ }^{3}$ write $f(g(x))$ in quadratic form

Method 1

- ${ }^{4}$ identify common factor
- ${ }^{5}$ complete the square

Method 2

- ${ }^{4}$ expand completed square form and equate coefficients
${ }^{-}$process for q and r and write in required form
- $^{3} 15+2 x-x^{2}$ or $-x^{2}+2 x+15$

Method 1

- ${ }^{4}-1\left(x^{2}-2 x\right.$ stated or implied by ${ }^{5}$
- ${ }^{5}-1(x-1)^{2}+16$

Method 2

- ${ }^{4} p x^{2}+2 p q x+p q^{2}+r$ and $p=-1$,
- ${ }^{5} q=-1$ and $r=16$

Note if $p=1 \bullet^{5}$ is not available

Notes:

2. Accept $16-(x-1)^{2}$ or $-\left[(x-1)^{2}-16\right]$ at \bullet^{5}.

Commonly Observed Responses:

Candidate A	
$-\left(x^{2}-2 x-15\right)$	$\bullet^{4} \checkmark$
$-\left(x^{2}-2 x+1-1-15\right)$	
$-(x-1)^{2}-16$	$\bullet^{5} \times$

Candidate D

$15+2 x-x^{2}$	$\bullet^{3} \checkmark$
$x^{2}-2 x-15$	$\bullet^{4} \times$
$(x-1)^{2}-16$	$\bullet^{5} \sqrt{ }$ eased

Eased, unitary coefficient of x^{2}

Candidate B

$15+2 x-x^{2} \quad \bullet^{3} \checkmark$
$x^{2}-2 x-15 \quad \bullet^{4} \times$
$p x^{2}+2 p q x+p q^{2}+r$ and $p=1$
$q=-1 \quad r=-16$
$5 \sqrt{ } \quad$ eased

Candidate E

$$
\begin{aligned}
& 15+2 x-x^{2} \\
& x^{2}-2 x-15 \\
& (x-1)^{2}-16 \\
& \text { so } 15+2 x-x^{2}= \\
& \\
& \\
& \hline
\end{aligned}
$$

Candidate C

$-x^{2}+2 x+15$	$\bullet^{3} \checkmark$
$-(x+1)^{2} \ldots$	$\bullet^{4} \times$

$-(x+1)^{2}+14$
Candidate F

$-x^{2}+2 x+15$	$\bullet^{3} \checkmark$
$-(x+1)^{2} \ldots$	$\bullet^{4} \times$
$-(x+1)^{2}+16$	$\bullet^{5} \sqrt{ } \sqrt{2}$

(lower level skill)

$$
\begin{gathered}
\bullet^{6}-1(x-1)^{2}+16=0 \\
\text { or } f((g(x)))=0
\end{gathered}
$$

- ${ }^{7}$ identify critical values

Notes:

3. Any communication indicating that the denominator cannot be zero gains \bullet^{6}.
4. Accept $x=5$ and $x=-3$ or $x \neq 5$ and $x \neq-3$ at \bullet •
5. If $x=5$ and $x=-3$ appear without working award $1 / 2$.

Commonly Observed Responses:
Candidate A

$\frac{1}{-(x-1)^{2}+16} \quad$| • |
| :--- |
| $x \neq 5$ |

Candidate B

$$
\begin{aligned}
& \frac{1}{f(g(x))} \\
& f(g(x))>0 \\
& x=-3, x=5 \\
& -3<x \quad x<5
\end{aligned} \quad \bullet^{6} \times x \downarrow
$$

3(a)
${ }^{1}$ determine the value of the required term

- $122 \frac{3}{4}$ or $\frac{91}{4}$ or 22.75

Notes:

1. Do not penalise the inclusion of incorrect units.
2. Accept rounded and unsimplified answers following evidence of correct substitution. Commonly Observed Responses:

Notes:

3. \bullet^{6} is unavailable for candidates who do not consider the toad in their conclusion.
4. For candidates who only consider the frog numerically award $1 / 5$ for the strategy.

Commonly Observed Responses:

Error with frogs limit - Frog Only	Using Method 3 Toad Only	Using Method 3Toad Only	Only
			$\bullet \checkmark$
	${ }^{3}$	$\bullet \checkmark$ 2	$\bullet{ }^{3} \downarrow$
$3 \cdot{ }^{4} \sqrt{1}$	issing		-4 49.7..roundin
$\mathrm{L}_{\mathrm{F}}=51 \quad \cdot 5 \sqrt{ }$	352.	${ }^{4}$ missing	error
$51>50$. 352 >	- $50 \cdot 1$.rounding error \times	${ }^{5} 50 \cdot 1 \ldots$
\therefore frog will escape.	so the toad escapes. \checkmark	- $50.1>50$ so the toad escapes.	$\cdot \quad 50.1>50$

Toad Conclusions

Limit $=52$
This is greater than the height of the well and so the toad will escape - award \bullet^{6}.

However

Limit $=52$ and so the toad escapes - $\bullet^{6 \wedge}$.

Iterations	$t_{1}=13$	
$f_{1}=32$		
$f_{2}=42.667$	$t_{2}=22.75$	
$f_{3}=46.222$	$t_{3}=30.0625$	
$f_{4}=47.407$	$t_{4}=35.547$	
$f_{5}=47.802$	$t_{5}=39.660$	
$f_{6}=47.934$	$t_{6}=42.745$	
$f_{7}=47.978$	$t_{7}=45.059$	
$f_{8}=47.993$	$t_{8}=46.794$	
$f_{9}=47.998$	$t_{9}=48.096$	
	$t_{10}=49.072$	
	$t_{11}=49.804$	
	$t_{12}=50.353$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
4 (a)			
- ${ }^{1}$ know to equate $f(x)$ and $g(x)$ - ${ }^{2}$ solve for x		- $1 \frac{1}{4} x^{2}-\frac{1}{2} x+3=\frac{1}{4} x^{2}-\frac{3}{2} x+5$ - ${ }^{2} \quad x=2$	2
Notes:			
1. \bullet^{1} and \bullet^{2} are not available to candidates who: (i) equate zeros, (ii) give answer only without working, (iii) arrive at $x=2$ with erroneous working.			
Commonly Observed Responses:			
Candidate A $\begin{aligned} & y=\frac{1}{4} x^{2}-\frac{1}{2} x+3 \\ & y=\frac{1}{4} x^{2}-\frac{3}{2} x+5 \end{aligned}$ subtract to get $\begin{aligned} & 0=x-2 \\ & x=2 \end{aligned}$ Candidate C $\begin{array}{cc} f(x)=\frac{1}{4} x^{2}-\frac{1}{2} x+3 & g(x)=\frac{1}{4} x^{2}-\frac{3}{2} x+5 \\ f^{\prime}(x)=\frac{1}{2} x-\frac{1}{2} & g^{\prime}(x)=\frac{1}{2} x-\frac{3}{2} \\ x=1 & \\ & \therefore x=3 \end{array}$		Candidate B $\begin{array}{ll} \frac{1}{4} x^{2}-\frac{1}{2} x=-3 & \\ \frac{1}{4} x^{2}-\frac{3}{2} x=-5 & \bullet \times \\ x=2 & \bullet^{2} \times \end{array}$ In this case the candidate	d zeros

Commonly Observed Responses:

Candidate A - Valid Strategy
Candidates who use the strategy:

Total Area $=$ Area A + Area B
Then mark as follows:
${ }^{*}$ Mark Area A for \bullet^{3} to \bullet^{8} then mark Area B for \bullet^{3} to \bullet^{8} and award the higher of the two. - ${ }^{9}$ is available for correctly adding two equal areas.

Candidate B - Invalid Strategy
For example, candidates who integrate each of the four functions separately within an invalid strategy

- $3 \checkmark$

Gain • ${ }^{4}$ if limits correct on

$$
\begin{gathered}
\int f(x) \text { and } \int h(x) \\
\text { or } \\
\int g(x) \text { and } \int k(x)
\end{gathered}
$$

- ${ }^{5}$ is unavailable

Gain \bullet^{6} for calculating either

$$
\begin{gathered}
\int f(x) \text { or } \int g(x) \\
\text { and } \\
\int h(x) \text { or } \int k(x)
\end{gathered}
$$

Gain \bullet^{7} for correctly substituting at least twice Gain \bullet^{8} for evaluating at least two integrals correctly

- ${ }^{9}$ is unavailable

Candidate D
$\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$
$\int_{0}^{2}\left(-\frac{1}{8} x^{2}-\frac{11}{4} x+6\right) d x \quad \bullet^{5} \times$
$-\frac{1}{24} x^{3}-\frac{11}{8} x^{2}+6 x \quad \bullet \sqrt{ } 1$
Candidate E
$\int \ldots=-\frac{1}{3}$ cannot be negative so $=\frac{1}{3} \bullet^{8} \times$
however, $=-\frac{1}{3}$ so Area $=\frac{1}{3}$
$\bullet 8 \checkmark$

Candidate F
$\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$
$\int_{0}^{2}\left(-\frac{1}{8} x^{2}+\frac{7}{4} x\right) d x$

- ${ }^{5}$
$-\frac{1}{24} x^{3}+\frac{7}{8} x^{2}$

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			
${ }^{1}{ }^{1}$ state centre of C_{1}		$\bullet^{1}(-3,-5)$	
\bullet^{2} state radius of C_{1}		- ${ }^{2} 5$	
- ${ }^{3}$ calculate distance between centres of C_{1} and C_{2}		$\bullet^{3} 20$	
${ }^{4}$ calculate radius of C_{2}		- ${ }^{4} 15$	4
Notes:			
1. For \bullet^{4} to be awarded radius of C_{2} must be greater than the radius of C_{1}. 2. Beware of candidates who arrive at the correct solution by finding the point of contact by an invalid strategy. 3. \bullet^{4} is for Distance $_{\text {clc2 } 2}-r_{c 1}$ but only if the answer obtained is greater than $r_{c 1}$.			
Commonly Observed Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
5 (b)			
${ }^{5}$ find ratio in which centre of C_{3} divides line joining centres of C_{1} and C_{2} - ${ }^{6}$ determine centre of C_{3} - ${ }^{7}$ calculate radius of C_{3} $-{ }^{8}$ state equation of C_{3}		${ }^{5} 3: 1$ - ${ }^{6}(6,7)$ ${ }^{7} r=20$ (answer must be consistent with distance between centres) - ${ }^{8}(x-6)^{2}+(y-7)^{2}=400$	4

Notes:

4. For \bullet^{5} accept ratios $\pm 3: \pm 1, \pm 1: \pm 3, \mp 3: \pm 1, \mp 1: \pm 3$ (or the appearance of $\frac{3}{4}$).
5. \bullet^{7} is for $r_{c 2}+r_{c 1}$.
6. Where candidates arrive at an incorrect centre or radius from working then \bullet^{8} is available. However \bullet^{8} is not available if either centre or radius appear ex nihilo (see note 5).
7. Do not accept 20^{2} for \bullet^{8}.
8. For candidates finding the centre by 'stepping out' the following is the minimum evidence for \bullet^{5} and \bullet^{6} : $(9,11)$

Correct answer using
the ratio $3: 1 \longrightarrow(6,7)$,

Commonly Observed Responses:

Candidate A

using the mid-point of centres: ${ }^{5} \times$
centre $\mathrm{C}_{3}=(3,3)$
radius of $\mathrm{C}_{3}=20$
$(x-3)^{2}+(y-3)^{2}=400$

Candidate \mathbf{B}

$\mathrm{C}_{1}=(-3,-5) \underset{1: 3}{\sim} \rightarrow \mathrm{C}_{2}(9,11) \quad \mathrm{r}=20$

$$
\begin{array}{ll}
C_{3}=\frac{1}{4}\binom{0}{-4} & \bullet \bullet^{5} \sqrt{ } \text { note } 4 \\
C_{3}=(0,-1) & \bullet^{6} \sqrt{2} \\
x^{2}+(y+1)^{2}=400 & \bullet^{7} \sqrt{\sqrt{V}}
\end{array}
$$

Candidate D - touches C_{2} internally only $\cdot{ }^{5} \times$
${ }^{6}{ }^{6}$ centre $\mathrm{C}_{3}=(3,3) \times$
\bullet^{6} centre $\mathrm{C}_{3}=(3,3) \times$
\bullet^{7} radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{2}=15 \sqrt{ } \mathbf{1}$ $\bullet 8(x-3)^{2}+(y-3)^{2}=225 \boxed{\boxed{ } 1}$
${ }^{-7}$ radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{1}=5$ V1 $.8(x-3)^{2}+(y-3)^{2}=25 \nabla 1$
Candidate E - centre C_{3} collinear with $\mathrm{C}_{1}, \mathrm{C}_{2}$

- \times
- ${ }^{6}$ e.g. centre $\mathrm{C}_{3}=(21,27) \times$
$-{ }^{7}$ radius of $\mathrm{C}_{3}=45$ (touch C_{1} internally only) $\sqrt{ }$
- $8(x-21)^{2}+(y-27)^{2}=2025$ \square

Question	Generic Scheme	Illustrative Scheme	Max Mark
7 (a)			
- ${ }^{1}$ integrate a term - ${ }^{2}$ complete integration with constant		- ${ }^{1} \frac{3}{2} \sin 2 x$ OR $\quad x$ $\begin{array}{lll}-2 & x+c & \frac{3}{2} \sin 2 x+c\end{array}$	2
Notes:			
Commonly Observed Responses:			
7 (b)			
- 3 substitute for $\cos 2 x$ - ${ }^{4}$ substitute for 1 and complete		-3 $\quad 3\left(\cos ^{2} x-\sin ^{2} x\right) \ldots$ or ... $\left(\sin ^{2} x+\cos ^{2} x\right)$ - ${ }^{4}$ $\ldots\left(\sin ^{2} x+\cos ^{2} x\right)=4 \cos ^{2} x-2 \sin ^{2} x$	2
Notes:			
1. Any valid substitution for $\cos 2 x$ is acceptable for \bullet^{3}. 2. Candidates who show that $4 \cos ^{2} x-2 \sin ^{2} x=3 \cos 2 x+1$ may gain both marks. 3. Candidates who quote the formula for $\cos 2 x$ in terms of A but do not use in the context of the question cannot gain \bullet^{3}.			
Commonly Observed Responses:			
Candidate A$\begin{gathered} 3 \cos 2 x+1=\left(2 \cos ^{2} x-1\right)+\left(2 \cos ^{2} x-1\right)+\left(1-2 \sin ^{2} x\right)+1 \\ =4 \cos ^{2} x-2 \sin ^{2} x \end{gathered}$			
Candidate B$\begin{array}{cc} 4 \cos ^{2} x-2 \sin ^{2} x=2(\cos 2 x+1)-(1-\cos 2 x) & \bullet^{3} \checkmark \\ =3 \cos 2 x+1 & \bullet \quad \\ \hline \end{array}$			
7 (c)			
- ${ }^{5}$ interpret link ${ }^{6}$ state result		$\begin{array}{ll}\bullet . & -\frac{1}{2} \int \ldots \\ .6 & -\frac{3}{4} \sin 2 x-\frac{1}{2} x+c\end{array}$	2
Notes:			
Commonly Observed Responses:			
$\begin{aligned} & \text { Candidate } \\ & \int \sin ^{2} x-2 \\ & =\int(3 \cos 2 \\ & \frac{3}{2} \sin 2 x+. \end{aligned}$			

Question \quad Generic Scheme	Illustrative Scheme	Max Mark
9.		
- ${ }^{1}$ use compound angle formula - ${ }^{2}$ compare coefficients - ${ }^{3}$ process for k - ${ }^{4}$ process for a - ${ }^{5}$ equates expression for h to 100 - ${ }^{6}$ write in standard format and attempt to solve -7 solve equation for $1.5 t$ - 8 process solutions for t	- $k \sin 1 \cdot 5 t \cos a-k \cos 1 \cdot 5 t \sin a$ $\bullet^{2} k \cos a=36, k \sin a=15$ stated explicitly - ${ }^{3} k=39$ - ${ }^{4} a=0.39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$ $\cdot{ }^{5}$ $\begin{aligned} & 39 \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)+65=100 \\ & \bullet \quad \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)=\frac{35}{39} \\ & \quad \Rightarrow 1 \cdot 5 t-0 \cdot 39479 \ldots=\sin ^{-1}\left(\frac{35}{39}\right) \end{aligned}$	8

Notes:

1. Treat $k \sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. $39 \sin 1 \cdot 5 t \cos a-39 \cos 1 \cdot 5 t \sin a$ or $39(\sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a)$ is acceptable for \bullet^{1} and \bullet^{3}.
3. Accept $k \cos a=36$ and $-k \sin a=-15$ for \bullet^{2}.
4. \bullet^{2} is not available for $k \cos 1 \cdot 5 t=36$ and $k \sin 1 \cdot 5 t=15$, however, \bullet^{4} is still available.
5. \bullet^{3} is only available for a single value of $k, k>0$.
6. ${ }^{4}$ is only available for a single value of a.
7. The angle at \bullet^{4} must be consistent with the equations at \bullet^{2} even when this leads to an angle outwith the required range.
8. Candidates who identify and use any form of the wave equation may gain \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \sin (1 \cdot 5 t-a)$.
9. Candidates who work consistently in degrees cannot gain \bullet^{8}.
10. Do not penalise additional solutions at \bullet^{8}.
11. On this occasion accept any answers which round to 1.0 and 1.6 (2 significant figures required).

Response 1: Missing information in working.

