SQ30/H/01
Mathematics Paper 1
(Non-Calculator)
Date - Not applicable

Duration - 1 hour and 10 minutes

Total marks - 60
Attempt ALL questions.
You may NOT use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:
or
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. Find $\int \frac{3 x^{3}+1}{2 x^{2}} d x, x \neq 0$.
2. Find the coordinates of the points of intersection of the curve
$y=x^{3}-2 x^{2}+x+4$ and the line $y=4 x+4$.
3. In the diagram, P has coordinates $(-6,3,9)$,

$$
\overrightarrow{\mathrm{PQ}}=6 \mathbf{i}+12 \mathbf{j}-6 \mathbf{k} \text { and } \overrightarrow{\mathrm{PQ}}=2 \overrightarrow{\mathrm{QR}}=3 \overrightarrow{\mathrm{RS}}
$$

Find the coordinates of S .

4. Given that $2 x^{2}+p x+p+6=0$ has no real roots, find the range of values for p, where $p \in \mathbb{R}$.
5. Line l_{1} has equation $\sqrt{3} y-x=0$.
(a) Line l_{2} is perpendicular to l_{1}. Find the gradient of l_{2}. 2
(b) Calculate the angle l_{2} makes with the positive direction of the x-axis.
6. (a) Find an equivalent expression for $\sin (x+60)^{\circ}$.
(b) Hence, or otherwise, determine the exact value of $\sin 105^{\circ}$.
7. (a) Show that $(x+1)$ is a factor of $x^{3}-13 x-12$.
(b) Factorise $x^{3}-13 x-12$ fully.
8. $f(x)$ and $g(x)$ are functions, defined on the set of real numbers, such that
$f(x)=1-\frac{1}{2} x$ and $g(x)=8 x^{2}-3$.
(a) Given that $h(x)=g(f(x))$, show that $h(x)=2 x^{2}-8 x+5$.
(b) Express $h(x)$ in the form $a(x+p)^{2}+q$.
(c) Hence, or otherwise, state the coordinates of the turning point on the graph of $y=h(x)$.
(d) Sketch the graph of $y=h(x)+3$, showing clearly the coordinates of the turning point and the y-axis intercept.
9. (a) AB is a line parallel to the line with equation $y+3 x=25$.

A has coordinates $(-1,10)$.
Find the equation of $A B$.
(b) $3 y=x+11$ is the perpendicular bisector of AB .

Determine the coordinates of B.
10. Find the rate of change of the function $f(x)=4 \sin ^{3} x$ when $x=\frac{5 \pi}{6}$.
11. The diagram shows the graph of $y=f^{\prime}(x)$. The x-axis is a tangent to this graph.

(a) Explain why the function $f(x)$ is never decreasing.
(b) On a graph of $y=f(x)$, the y-coordinate of the stationary point is negative. Sketch a possible graph for $y=f(x)$.
12. The voltage, $V(t)$, produced by a generator is described by the function $V(t)=120 \sin 100 \pi t, t>0$, where t is the time in seconds.
(a) Determine the period of $V(t)$. 2
(b) Find the first three times for which $V(t)=-60$. 6

[END OF SPECIMEN QUESTION PAPER]

SQ30/H/01

Mathematics Paper 1
(Non-Calculator)

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Repeated error within a question

Definitions of Mathematics-specific command words used in this Specimen Question Paper.

Determine: find a numerical value or values from the information given.
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$.

Show that: use mathematics to prove something, eg that a statement or given value is correct all steps, including the required conclusion, must be shown.

Express: use given information to rewrite an expression in a specified form.
Hence: use the previous answer to proceed.
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used.

Justify: show good reason(s) for the conclusion(s) reached.

	Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each •
1	Ans: $\frac{3}{4} x^{2}-\frac{1}{2} x^{-1}+C$ - ${ }^{1}$ preparation for integration - ${ }^{2}$ correct integration of first term - ${ }^{3}$ correct integration of second term - ${ }^{4}$ includes constant of integration	4	- $\frac{3}{2} x+\frac{1}{2} x^{-2}$ - ${ }^{2} \frac{3}{2} \cdot \frac{x^{2}}{2}+\ldots$ - $^{3} \ldots+\frac{1}{2} \cdot \frac{x^{-1}}{-1}$ - $4 \frac{3}{4} x^{2}-\frac{1}{2} x^{-1}+C$
2	Ans: $(-1,0),(0,4),(3,16)$ - ${ }^{1}$ sets equation of curve equal to equation of line -2 equates to zero - ${ }^{3}$ factorises fully - calculates x-coordinates - ${ }^{5}$ calculates y-coordinates	5	- $x^{3}-2 x^{2}+x+4=4 x+4$ - ${ }^{2} x^{3}-2 x^{2}-3 x=0$ -3 $\quad x(x+1)(x-3)=0$ - ${ }^{4} x=0, x=-1, x=3$ - ${ }^{5}(0,4),(-1,0),(3,16)$
3	Ans: $S(5,25,-2)$ - ${ }^{1}$ find coordinate of Q or component vector \mathbf{q} -2 sets up vector equation for \mathbf{r} \bullet^{3} find coordinate of R or component vector \mathbf{r} - ${ }^{4}$ sets up vector equation for \mathbf{s} .${ }^{5}$ find coordinate of S	5	$\begin{aligned} & \bullet \quad \mathbf{q}=\mathbf{p}+\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c} 0 \\ 15 \\ 3 \end{array}\right) \text { or } \mathrm{Q}(0,15,3) \\ & \bullet^{2} \quad \mathbf{r}=\mathbf{q}+\overrightarrow{\mathrm{QR}}=\left(\begin{array}{c} 0 \\ 15 \\ 3 \end{array}\right)+\left(\begin{array}{c} 3 \\ 6 \\ -3 \end{array}\right) \\ & \bullet^{3} \quad \mathbf{r}=\left(\begin{array}{c} 3 \\ 21 \\ 0 \end{array}\right) \text { or } \mathrm{R}(3,21,0) \\ & \bullet^{4} \quad \mathbf{s}=\mathbf{r}+\overrightarrow{\mathrm{RS}}=\left(\begin{array}{c} 3 \\ 21 \\ 0 \end{array}\right)+\left(\begin{array}{c} 2 \\ 4 \\ -2 \end{array}\right) \\ & \bullet^{5} \quad \mathrm{~S}(5,25,-2) \end{aligned}$

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
4		Ans: $-4<p<12$ -1 know discriminant <0 - 2 simplify - ${ }^{3}$ factorise LHS - ${ }^{4}$ correct range	4	- ${ }^{1} b^{2}-4 a c<0$ and $a=2, b=p, c=p+6$ stated or implied by \bullet^{2} - ${ }^{2} p^{2}-8 p-48<0$ - ${ }^{3}(p-12)(p+4)<0$ - ${ }^{4}-4<p<12$
5	(a)	Ans: $m_{l_{2}}=-\sqrt{3}$ - ${ }^{1}$ rearranging equation to calculate gradient of line l_{1} -2 calculating gradient of l_{2}	2	$\begin{aligned} & \bullet \quad y=\frac{1}{\sqrt{3}} x \quad m=\frac{1}{\sqrt{3}} \\ & \bullet m_{l_{2}}=-\sqrt{3} \end{aligned}$
	(b)	Ans: $\theta=\frac{2 \pi}{3}$ or 120° - ${ }^{3}$ using $m=\tan \theta$ -4 calculating angle	2	$\bullet^{3} \tan \theta=-\sqrt{3}$ - $4 \theta=\frac{2 \pi}{3}$ or 120°
6	(a) (b)	Ans: $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ or $\frac{\sqrt{2}+\sqrt{6}}{4}$ - ${ }^{1}$ correct expansion -2 any expression equivalent to $\sin 105^{\circ}$ - ${ }^{3}$ correct exact value equivalents - ${ }^{4}$ correct answer	4	- ${ }^{1} \sin x^{\circ} \cos 60^{\circ}+\cos x^{\circ} \sin 60^{\circ}$ - ${ }^{2} \sin (45+60)^{\circ}$ or equivalent - $\frac{1}{\sqrt{2}} \times \frac{1}{2}+\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}$ - $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ or $\frac{\sqrt{2}+\sqrt{6}}{4}$
7	(a)	-1 know to use $x=-1$ -2 complete synthetic division - ${ }^{3}$ recognition of zero remainder	3	 ${ }^{3}(x+1)$ is a factor as remainder is zero
	(b)	Ans: $(x+1)(x+3)(x-4)$ -4 identify quotient - 5 factorised fully	2	- ${ }^{4} x^{2}-x-12$ ${ }^{5}(x+1)(x+3)(x-4)$
Notes		Alternative methods of showing $(x+1)$ is a factor, such as long division, inspection and evaluating are perfectly acceptable.		

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
8	(a)	Ans: $h(x)=2 x^{2}-8 x+5$ - ${ }^{1}$ correct substitution - ${ }^{2}$ squaring - ${ }^{3}$ expanding and simplifying	3	- $1 \quad h(x)=8\left(1-\frac{1}{2} x\right)^{2}-3$ - $21-x+\frac{1}{4} x^{2}$ - ${ }^{3} h(x)=2 x^{2}-8 x+5$
	(b)	Ans: $2(x-2)^{2}-3$ - ${ }^{4}$ identify common factor - ${ }^{5}$ complete the square - 6 process for q	3	-4 $2\left(x^{2}-4 x \ldots\right.$ stated or implied by 0^{3} - ${ }^{5} 2(x-2)^{2} \ldots$ -6 $2(x-2)^{2}-3$
Notes		Values for p and q must be consistent with the value for a.		
	(c)	Ans: $(2,-3)$ ${ }^{7}$ state turning point	1	$\bullet^{7}(2,-3)$
	(d)	Ans: \bullet^{8} correct shape - ${ }^{9}$ annotation, including y-axis intercept	2	- ${ }^{8}$ parabola with minimum turning point labelled (positioned consistently with answer to (b)) ${ }^{9}(0,8)$

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
9	(a)	Ans: $y-10=-3(x+1)$ - ${ }^{1}$ finding equation of line	1	-1 $y-10=-3(x+1)$ or equivalent
	(b)	Ans: $B(3,-2)$ -2 use of simultaneous equations -3 solving to find one coordinate of midpoint -4 finding remaining coordinate of midpoint ${ }^{5}$ using midpoint formula or 'stepping out' ${ }^{6}$ finding coordinates of B	5	-2 $y=-3 x+7$ and $3 y=x+11$ - ${ }^{3}$ either $x=1$ or $y=4$ - ${ }^{4} M(1,4)$ $\cdot{ }^{5}$ either $x=3$ or $y=-2$ - $6(3,-2)$
10		Ans: $\frac{3 \sqrt{3}}{2}$ - ${ }^{1}$ start to differentiate -2 complete differentiation .3 evaluate $f^{\prime}\left(\frac{5 \pi}{6}\right)$	3	- $13 \times 4 \sin ^{2} x$ - ${ }^{2} \times \cos x$ $\bullet^{3} 12\left(\frac{1}{2}\right)^{2} \times \frac{-\sqrt{3}}{2}=12 \times \frac{1}{4} \times \frac{-\sqrt{3}}{2}=\frac{-3 \sqrt{3}}{2}$
11	(a)	- ${ }^{1}$ knows derived function represents gradient and that the minimum value of $f^{\prime}(x)$ is zero	1	-1 $m=f^{\prime}(x) \geq 0$ stated explicitly
	(b)	${ }^{2}{ }^{2}$ interprets information correctly \bullet^{3} completes sketch	2	- ${ }^{2}$ stationary point plotted in fourth quadrant - ${ }^{3}$ point of inflexion on an increasing graph

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each •
12	(a)	Ans: $\frac{1}{50} \mathrm{sec}$ or 0.02 sec -1 knows how to find period -2 correct answer	2	$\begin{aligned} & \bullet \quad T=\frac{2 \pi}{100 \pi} \\ & \bullet^{2} \frac{1}{50} \text { or } 0.02 \end{aligned}$
	(b)	Ans: $\frac{7}{600}, \frac{11}{600}$, and $\frac{19}{600} \mathrm{sec}$ - ${ }^{1}$ equating function with -60 -2 rearranging - ${ }^{3}$ solve equation for $100 \pi t$ - ${ }^{4}$ process solutions for t - ${ }^{5}$ knowing to use period or demonstrating another solution from the third quadrant - ${ }^{6}$ third value for t	6	- ${ }^{1} 120 \sin 100 \pi t=-60$ - ${ }^{2} \sin 100 \pi t=-\frac{1}{2}$ $\bullet{ }^{3}$ $\bullet 4$ $-\bullet^{3}$ $100 \pi t=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$ \bullet^{4} $t=\frac{7}{600}$ and $\frac{11}{600}$ - ${ }^{5} T=\frac{1}{50}$ or $100 \pi t=3 \pi+\frac{\pi}{6}$ - $\quad \frac{19}{600}$

SQ30/H/02
Mathematics
Paper 2
Date - Not applicable
Duration - 1 hour and 30 minutes

Total marks - 70
Attempt ALL questions.
You may use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Write your answers clearly in the answer booklet provided. In the answer booklet you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:
or
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1.

A square based right pyramid is shown in the diagram.
Square $O A B C$ has a side length of 60 units with edges $O A$ and $O C$ lying on the x-axis and y-axis respectively.
The coordinates of D are (30, 30, 80).
E is the midpoint of $B D$ and F divides $A B$ in the ratio 2:1.
(a) Find the coordinates of E and F .
(b) Calculate $\overrightarrow{E D} . \overrightarrow{E F}$.
(c) Hence, or otherwise, calculate the size of angle DEF.
2. A wildlife reserve has introduced conservation measures to build up the population of an endangered mammal. Initially the reserve population of the mammal was 2000. By the end of the first year there were 2500 and by the end of the second year there were 2980.
It is believed that the population can be modelled by the recurrence relation:
$u_{n+1}=a u_{n}+b$,
where a and b are constants and n is the number of years since the reserve was set up.
(a) Use the information above to find the values of a and b.
(b) Conservation measures will end if the population stabilises at over 13000. Will this happen? Justify your answer.
3. The diagram shows the graph of $f(x)=x(x-p)(x-q)^{2}$.

(a) Determine the values of p and q.
(b) Find the equation of the tangent to the curve when $x=1$.
4. (a) Express $y=\log _{4} 2 x$ in the form $y=\log _{4} x+k$, clearly stating the value of k.
(b) Hence, or otherwise, describe the relationship between the graphs of $y=\log _{4} 2 x$ and $y=\log _{4} x$.
(c) Determine the coordinates of the point where the graph of $y=\log _{4} 2 x$ intersects the x-axis.
(d) Sketch and annotate the graph of $y=f^{-1}(x)$, where $f(x)=\log _{4} 2 x$.
5.

Points $A(-1,-1)$ and $B(7,3)$ lie on the circumference of a circle with centre C, as shown in the diagram.
(a) Find the equation of the perpendicular bisector of $A B$.

CB is parallel to the x-axis.
(b) Find the equation of the circle, passing through A and B, with centre C.
6. The points $\mathrm{A}(0,9,7), \mathrm{B}(5,-1,2), \mathrm{C}(4,1,3)$ and $\mathrm{D}(x,-2,2)$ are such that AB is perpendicular to CD.
Determine the value of x.
7. Given that $P(t)=30 e^{t-2}$ decide whether each of the statements below is true or false. Justify your answers.

Statement A $\quad P(0)=30$.
Statement B When $P(t)=15$, the only possible value of t is $1 \cdot 3$ to one decimal place.
8. A design for a new grain container is in the shape of a cylinder with a hemispherical roof and a flat circular base. The radius of the cylinder is r metres, and the height is h metres.
The volume of the cylindrical part of the container needs to be 100 cubic metres.

(a) Given that the curved surface area of a hemisphere of radius r is $2 \pi r^{2}$ show that the surface area of metal needed to build the grain container is given by:

$$
A=\frac{200}{r}+3 \pi r^{2} \text { square metres }
$$

(b) Determine the value of r which minimises the amount of metal needed to build the container.
9. A sea-life visitor attraction has a new logo in the shape of a shark fin.

The outline of the logo can be represented by parts of

- the x axis
- the curve with equation $y=\cos (2 x)$
- the curve with equation $y=\sin \left(\frac{3}{4} x-\frac{3}{2} \pi\right)$
as shown in the diagram.

Calculate the shaded area.
10. Two sound sources produce the waves $y=\sin t$ and $y=\sqrt{3} \cos t$.

An investigation into the addition of these two waves produces the graph shown, with equation $y=k \cos (t-\alpha)$ for $0 \leq t \leq 2 \pi$.

(a) Calculate the values of k and α.

The point P has a y-coordinate of $1 \cdot 2$.
(c) Hence calculate the value of the t-coordinate of point P .

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Repeated error within a question

Definitions of Mathematics-specific command words used in this Specimen Question Paper.

Determine: find a numerical value or values from the information given.
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$.

Show that: use mathematics to prove something, eg that a statement or given value is correct all steps, including the required conclusion, must be shown.

Express: use given information to rewrite an expression in a specified form.
Hence: use the previous answer to proceed.
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used.

Justify: show good reason(s) for the conclusion(s) reached.

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each -
1	(a)	- ${ }^{1}$ find coordinates of E - ${ }^{2}$ find coordinates of F	2	$\begin{array}{ll} \bullet^{1} & E(45,45,40) \\ \bullet^{2} & F(60,40,0) \end{array}$
	(b)	Ans: -1750 - ${ }^{3}$ find $\overrightarrow{E D}$ and $\overrightarrow{E F}$ -4 correct calculation of scalar product	2	$\cdot^{3} \overrightarrow{\mathrm{ED}}=\left(\begin{array}{c} -15 \\ -15 \\ 40 \end{array}\right), \overrightarrow{\mathrm{EF}}=\left(\begin{array}{c} 15 \\ -5 \\ -40 \end{array}\right)$ $\cdot{ }^{4} \overrightarrow{\mathrm{ED}} \cdot \overrightarrow{\mathrm{EF}}=-225+75-1600=-1750$
	(c)	Ans: 154° - 5 know how to find angle DEF using formula -6 find $\|\overrightarrow{E D}\|$ - ${ }^{7}$ find $\|\overrightarrow{\mathrm{EF}}\|$ - ${ }^{8}$ calculates angle DEF	4	$\cdot{ }^{5} \cos D E F=\frac{\overrightarrow{\mathrm{ED}} \cdot \overrightarrow{\mathrm{EF}}}{\|\overrightarrow{\mathrm{ED}}\|\|\overrightarrow{\mathrm{EF}}\|}$ or equivalent - $6\|\overrightarrow{E D}\|=\sqrt{2050}$ -7 $\|\overrightarrow{\mathrm{EF}}\|=\sqrt{1850}$ $\cdot{ }^{8} \cos$ DEF $=\frac{-1750}{\sqrt{2050} \sqrt{1850}}$ $\text { DEF }=153 \cdot 977 \ldots=154^{\circ}$
2	(a)	Ans: $a=0.96, b=580$ - ${ }^{1}$ set up one equation - ${ }^{2}$ set up second equation - ${ }^{3}$ solve for one variable - ${ }^{4}$ solve for second variable	4	

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each -
	(b)	Ans: Yes. Stabilises at 14500 - ${ }^{5}$ knows how to find the limit - ${ }^{6}$ calculate limit - ${ }^{7}$ conclusion	3	- ${ }^{7}$ yes, conservation measures will end, since the predicted population stabilises at 14500 and $14500>13000$
3	(a)	Ans: $p=1, q=4$ - ${ }^{1}$ state values of p and q	1	- ${ }^{1} \quad p=1, q=4$
	(b)	Ans: $y=9(x-1)$ - ${ }^{2}$ expand brackets - ${ }^{3}$ differentiate - ${ }^{4}$ calculate gradient of tangent . 5 substitutes gradient and $(1,0)$ into equation of line	4	-2 $f(x)=x^{4}-9 x^{3}+24 x^{2}-16 x$ - ${ }^{3} f^{\prime}(x)=4 x^{3}-27 x^{2}+48 x-16$ - $f^{\prime}(1)=4-27+48-16=9$ - ${ }^{5} y=9(x-1)$

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each -
4	(a)	Ans: $y=\log _{4} x+\frac{1}{2}$ - ${ }^{1}$ using law of logarithms -2 evaluating $\log _{4} 2$	2	$\begin{aligned} & \cdot \log _{4} 2 x=\log _{4} 2+\log _{4} x \\ & \cdot 2 \log _{4} 2=\frac{1}{2} \end{aligned}$
	(b)	Ans: Graph of $y=\log _{4} x$ moved up by $\frac{1}{2}$ or graph of $y=\log _{4} x$ compressed horizontally by a factor of 2. - ${ }^{3}$ valid description of relationship	1	\bullet^{3} valid description - see answer
	(c)	Ans: $x=\frac{1}{2}$ - ${ }^{4}$ setting $y=0$ - ${ }^{5}$ solving for x	2	$\begin{aligned} & \cdot{ }^{4} \log _{4} 2 x=0 \\ & \cdot \quad x=\frac{1}{2} \end{aligned}$
	(d)	Ans: - 6 reflecting $y=\log _{4} 2 x$ in the line $y=x$ - ${ }^{7}$ correct shape ${ }^{8}$ annotating (2 points) (or other valid method)	3	- 6 reflect in $y=x$.7 . $8\left(0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
5	(a)	Ans: $y-1=-2(x-3)$ - ${ }^{1}$ calculate midpoint of $A B$ - ${ }^{2}$ calculate gradient of $A B$ -3 state gradient of perpendicular bisector - ${ }^{4}$ substitute into equation of line	4	
	(b)	Ans: $(x-2)^{2}+(y-3)^{2}=25$ - ${ }^{5}$ knowing and using $y=3$ ${ }^{-6}$ solving for x - ${ }^{7}$ identifying the radius \bullet^{8} obtain circle equation	4	. $5 \quad 3=-2 x+7$ - ${ }^{6} x=2$ - ${ }^{7} \quad r=5$ $\bullet^{8}(x-2)^{2}+(y-3)^{2}=25$
6		Ans: $x=-3$ - ${ }^{1}$ use perpendicular property - ${ }^{2}$ find $\overrightarrow{C D}$ - ${ }^{3}$ find $\overrightarrow{A B}$ - ${ }^{4}$ correct substitution into scalar product formula - ${ }^{5}$ calculates value of x	5	- ${ }^{1}$ If $\overrightarrow{C D}$ is perpendicular to $\overrightarrow{A B}$ then $\overrightarrow{C D} \cdot \overrightarrow{A B}=0$ $\begin{aligned} & \bullet^{2}\left(\begin{array}{c} x-4 \\ -3 \\ -1 \end{array}\right) \\ & \bullet^{3}\left(\begin{array}{c} 5 \\ -10 \\ -5 \end{array}\right) \end{aligned}$ - ${ }^{4} 5(x-4)+(-10)(-3)+(-5)(-1)=0$ $\cdot{ }^{5} \quad x=-3$

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each -
7		Ans: A False and B True - ${ }^{1}$ valid reason for statement A - ${ }^{2}$ selecting true or false for statement A with valid reason - ${ }^{3}$ setting $P(t)=15$ - ${ }^{4}$ taking log to base e - 5 completing valid reason - ${ }^{6}$ selecting true or false for statement B with valid reason	6	- ${ }^{1} \quad P(0)=30 e^{-2}=4.06$ - ${ }^{2}$ false, since $P(0) \neq 30$ (do not award without valid reason) - ${ }^{3} 15=30 e^{t-2}$ - ${ }^{4} \ln e^{t-2}=\ln 0 \cdot 5$ - $5 \quad t-2=\ln 0 \cdot 5$ $t=\ln 0 \cdot 5+2 \quad(1 \cdot 3)$ ${ }^{6}$ true, since $t=1.3$ to one decimal place and there is only one solution (do not award without valid reason)
Notes		Substituting $t=1.3$ into $P(t)=30 e^{t-2}$ is not sufficient to show that statement B is true, since it does not prove that $t=1.3$ is the only solution.		
8	(a)	- ${ }^{1}$ know to equate volume to 100 - ${ }^{2}$ obtain an expression for h - ${ }^{3}$ complete area evaluation	3	$\begin{aligned} & \bullet{ }^{1} \quad V=\pi r^{2} h=100 \\ & \bullet{ }^{2} h=\frac{100}{\pi r^{2}} \\ & \bullet{ }^{3} \quad A=\pi r^{2}+2 \pi r^{2}+2 \pi r \times \frac{100}{\pi r^{2}} \end{aligned}$
	(b)	Ans: $r=2.20 \mathrm{~m}$ - ${ }^{4}$ know to and start to differentiate - ${ }^{5}$ complete differentiation - ${ }^{6}$ set derivative to zero - ${ }^{7}$ obtain r - 8 justify nature of stationary point - ${ }^{9}$ interpret result	6	- ${ }^{4} A^{\prime}(r)=6 \pi r \ldots$ - ${ }^{5} A^{\prime}(r)=6 \pi r-\frac{200}{r^{2}}$ -6 $6 \pi r-\frac{200}{r^{2}}=0$. ${ }^{7} r=2.20$ metres $\bullet^{8} A^{\prime \prime}(r)=6 \pi+\frac{400}{r^{3}} \Rightarrow A^{\prime \prime}(2 \cdot 1974 \ldots)=56 \cdot 5 \ldots$. ${ }^{9}$ minimum (when $r=2.20 \mathrm{~m}$)
Notes		Candidates may use a nature table at \bullet^{8} to justify a minimum turning point when $r=2 \cdot 1974 \ldots$		

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each -
9		Ans: $\frac{5}{6}$ - ${ }^{1}$ knowing to use integration -2 using correct limits - 3 integrating correctly - ${ }^{4}$ integrating correctly - ${ }^{5}$ substituting limits correctly -6 evaluating correctly	6	- $1 \int \sin \left(\frac{3}{4} x-\frac{3}{2} \pi\right) d x-\int \cos (2 x) d x$ -2 $\int_{0}^{\frac{2}{3} \pi} \sin \left(\frac{3}{4} x-\frac{3}{2} \pi\right) d x-\int_{0}^{\frac{\pi}{4}} \cos (2 x) d x$ - ${ }^{3}\left[-\frac{4}{3} \cos \left(\frac{3}{4} x-\frac{3}{2} \pi\right)\right] \ldots \ldots$ - ${ }^{4}-\left[\frac{1}{2} \sin (2 x)\right]$ - ${ }^{5}$ See * below - $6\left(\frac{4}{3}-0\right)-\left(\frac{1}{2}-0\right)=\frac{5}{6}$
* $\left(\left[-\frac{4}{3} \cos \left(\frac{3}{4} \times \frac{2}{3} \pi-\frac{3}{2} \pi\right)\right]-\left[-\frac{4}{3} \cos \left(0-\frac{3}{2} \pi\right)\right]\right)-\left(\left[\frac{1}{2} \sin \left(2 \times \frac{1}{4} \pi\right)\right]-\left[\frac{1}{2} \sin (2 \times 0)\right]\right)$				
10	(a)	Ans: $k=2, \alpha=\frac{\pi}{6}$ or equivalent - ${ }^{1}$ knows to set wave function equal to addition of individual waves -2 knows to expand - 3 knows to compare coefficients - ${ }^{4}$ interpret comparison	4	- ${ }^{1} \sin t+\sqrt{3} \cos t=k \cos (t-\alpha)$ or equivalent - ${ }^{2} k \cos \alpha \cos t+k \sin \alpha \sin t$ or equivalent - ${ }^{3} k \sin \alpha=1, \quad k \cos \alpha=\sqrt{3}$ or equivalent -4 $k=2, \quad \alpha=\frac{\pi}{6}$ or equivalent
		Ans: 5.9 - 5 equates wave function with y-coordinate of P - rearranges correctly . 7 solve equation for $t-\frac{\pi}{6}$ - 8 find t-coordinate of P by interpreting diagram	4	. $52 \cos \left(t-\frac{\pi}{6}\right)=1 \cdot 2$ or equivalent . $6 \cos \left(t-\frac{\pi}{6}\right)=0.6$ or equivalent

[END OF SPECIMEN MARKING INSTRUCTIONS]

