X056/301

NATIONAL QUALIFICATIONS 2000

THURSDAY, 25 MAY
9.00 AM - 10.10 AM

MATHEMATICS HIGHER

Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 There are three Sections in this paper.
Section A assesses the compulsory units Mathematics 1 and 2.
Section B assesses the optional unit Mathematics 3 .
Section C assesses the optional unit Statistics.
Candidates must attempt all questions in Section A (Mathematics 1 and 2) and either Section B (Mathematics 3)
or Section C (Statistics).
3 Full credit will be given only where the solution contains appropriate working.
4 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:
The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.
Scalar Product: $\quad \boldsymbol{a} . \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}

$$
\text { or } \quad \boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae: $\quad \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$

$$
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

$$
\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}
$$

$$
\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1=1-2 \sin ^{2} \mathrm{~A}
$$

Table of standard derivatives and integrals:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

Statistics:

Sample standard deviation: $\quad s=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\frac{1}{n-1}\left(\sum x_{i}{ }^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}\right)} \begin{aligned} & \text { where } n \text { is the } \\ & \text { sample size. }\end{aligned}$
Sums of squares and products: $S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}$
$S_{y y}=\Sigma\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-\frac{1}{n}\left(\sum y_{i}\right)^{2}$
$S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}$
Linear regression:
The equation of the least squares regression line of y on x is given by $y=\alpha+\beta x$, where estimates for α and β, a and b, are given by: $a=\bar{y}-b \bar{x}$

$$
b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}
$$

Product moment correlation coefficient r :

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

ALL candidates should attempt this Section.

A1. On the coordinate diagram shown, A is the point $(6,8)$ and B is the point ($12,-5$). Angle $\mathrm{AOC}=p$ and angle $\mathrm{COB}=q$.
Find the exact value of $\sin (p+q)$.

A2. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $\mathrm{B}(3,0)$.

(a) Find the coordinates of the turning point at A .
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots. 1

Marks

A3. Find the size of the angle a° that the line joining the points $\mathrm{A}(0,-1)$ and $B(3 \sqrt{3}, 2)$ makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).

1
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.

A5. Two sequences are generated by the recurrence relations $u_{n+1}=a u_{n}+10$ and $v_{n+1}=a^{2} v_{n}+16$.
The two sequences approach the same limit as $n \rightarrow \infty$.
Determine the value of a and evaluate the limit.

A6. For what range of values of k does the equation $x^{2}+y^{2}+4 k x-2 k y-k-2=0$ represent a circle?
[END OF SECTION A]

Candidates should now attempt
 EITHER Section B (Mathematics 3) on Page six OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1,2 and 3 should attempt this Section.

B7. VABCD is a pyramid with a rectangular base $A B C D$.
Relative to some appropriate axes,

$$
\begin{aligned}
& \overrightarrow{\mathrm{VA}} \text { represents }-7 \boldsymbol{i}-13 \boldsymbol{j}-11 \boldsymbol{k} \\
& \overrightarrow{\mathrm{AB}} \text { represents } 6 \boldsymbol{i}+6 \boldsymbol{j}-6 \boldsymbol{k} \\
& \overrightarrow{\mathrm{AD}} \text { represents } 8 \boldsymbol{i}-4 \boldsymbol{j}+4 \boldsymbol{k} .
\end{aligned}
$$

K divides BC in the ratio 1:3.
Find VK in component form.

B8. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$.

If $f^{\prime}(x)=\sin (3 x)$, express y in terms of x.

B9. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.

B10. Find the maximum value of $\cos x-\sin x$ and the value of x for which it occurs in the interval $0 \leq x \leq 2 \pi$.

6

THURSDAY, 25 MAY 10.30 AM - 12.00 NOON

MATHEMATICS
HIGHER
Paper 2

Read Carefully

1 Calculators may be used in this paper.

2 There are three Sections in this paper.
Section A assesses the compulsory units Mathematics 1 and 2.
Section B assesses the optional unit Mathematics 3.
Section C assesses the optional unit Statistics.
Candidates must attempt all questions in Section A (Mathematics 1 and 2) and
either Section B (Mathematics 3)
or Section C (Statistics).
3 Full credit will be given only where the solution contains appropriate working.
4 Answers obtained by readings from scale drawings will not receive any credit.

SECTION A (Mathematics 1 and 2)

ALL candidates should attempt this Section.

A1. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

A2. (a) Find the equation of AB , the perpendicular bisector of the line joining the points $\mathrm{P}(-3,1)$ and $Q(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T .
Write down

(i) the equation of the tangent at Q
(ii) the coordinates of T .

A3. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.

A4. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A, is given by

$$
\mathrm{A}=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3} .
$$

A5. Solve the equation $3 \cos 2 x^{\circ}+\cos x^{\circ}=-1$ in the interval $0 \leq x \leq 360$.

A6. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.
The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron.
Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

[END OF SECTION A]

Candidates should now attempt

EITHER Section B (Mathematics 3) on Pages five and six

OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1,2 and 3 should attempt this Section.

B7. For what value of t are the vectors $u=\left(\begin{array}{r}t \\ -2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{r}2 \\ 10 \\ t\end{array}\right)$ perpendicular?

B8. Given that $f(x)=(5 x-4)^{\frac{1}{2}}$, evaluate $f^{\prime}(4)$.

B9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm .
Coordinate axes are taken as shown.

(a) The point A has coordinates $(0,9,8)$ and C has coordinates $(17,0,8)$.
Write down the coordinates of B .
(b) Calculate the size of angle ABC .

B10. Find $\int \frac{1}{(7-3 x)^{2}} d x$.

B11. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of P and Q.

Higher 2000 - Paper 1 Solutions

1. On the coordinate diagram shown, A is the point $(6,8)$ and B is the point $(12,-5)$. Angle $\mathrm{AOC}=p$ and angle $\mathrm{COB}=q$.
Find the exact value of $\sin (p+q)$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	C	NC	T9	$\frac{63}{65}$	2000 P1 Q1

- ${ }^{1}$ ss: know to use trig expansion
- ${ }^{2}$ pd: process missing sides
${ }^{3}$ ic: interpret data
${ }^{4}$ pd: process
- ${ }^{1} \sin p \cos q+\cos p \sin q$
- 210 and 13
-3 $\frac{8}{10} \cdot \frac{12}{13}+\frac{6}{10} \cdot \frac{5}{13}$
- $4 \frac{126}{130}$

2. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $\mathrm{B}(3,0)$.

(a) Find the coordinates of the turning point at A.
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
(a)	4	C	NC	C8	A(1,4)	2000 P1 Q2
(b)	2	C	NC	A3	sketch (translate 4 up, 2 left $)$	
(c)	1	A/B	NC	A2	$4<k<8$	

- ${ }^{1}$ ss: know to differentiate
${ }^{2}$ pd: differentiate correctly
- ${ }^{3}$ ss: know gradient $=0$
${ }^{4}$ pd: process
.${ }^{5}$ ic: interpret transformation
${ }^{6}$ ic: interpret transformation
${ }^{-7}$ ic: interpret sketch
- $\frac{d y}{d x}=\ldots$
- $2 \frac{d y}{d x}=3 x^{2}-12 x+9$
- $3 x^{2}-12 x+9=0$
- $4 \mathrm{~A}=(1,4)$
translate $f(x) 4$ units up, 2 units left
.5 sketch with coord. of $\mathrm{A}^{\prime}(-1,8)$
${ }^{6}{ }^{6}$ sketch with coord. of $\mathrm{B}^{\prime}(1,4)$
${ }{ }^{7} 4<k<8$ (accept $4 \leq k \leq 8$)

3. Find the size of the angle a° that the line joining the points $\mathrm{A}(0,-1)$ and $\mathrm{B}(3 \sqrt{3}, 2)$ makes with the positive direction of the x-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	C	NC	G2	30	2000 P1 Q3

- ${ }^{1}$ ss: know how to find gradient or equ.
${ }^{2}{ }^{2}$ pd: process
-3 ic: interpret exact value
- $\frac{2-(-1)}{3 \sqrt{3-0}}$
$\bullet^{2} \tan a=$ gradient stated or implied by ${ }^{-3}$
- ${ }^{3} a=30$

4. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the point of the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(ai)	4	C	NC	C4	$x=\frac{1}{3}$ and $x=3$	2000 P1 Q4
(aii)	1	C	NC	CGD	parallel and coincident	
(b)	5	C	NC	C17	$21 \frac{1}{3}$	

- ${ }^{1}$ ss: know to diff. and equate
$\bullet 2$ pd: differentiate
- ${ }^{3} \mathrm{pd}$: form equation
- ${ }^{4}$ ic: interpret solution
${ }^{5}$ ic: interpret diagram
- ${ }^{6}$ ss: know how to find area between curves
${ }^{7}$ ic: interpret limits
${ }^{8}$ pd: form integral
${ }^{9}$ pd: process integration
- ${ }^{10}$ pd: process limits
- ${ }^{1}$ find derivatives and equate
- $2 x^{2}-12$ and $10 x-15$
- $3 x^{2}-10 x+3=0$
- ${ }^{4} x=3, x=\frac{1}{3}$
${ }^{5}$ tangents at $x=\frac{1}{3}$ are parallel, at $x=3$ coincident
${ }^{6}{ }^{6} \int($ cubic - parabola $)$
or \int (cubic) $-\int$ (parabola)
${ }^{7} \int_{-1}^{3} \cdots d x$
- $\int\left(x^{3}-5 x^{2}+3 x+9\right) d x$ or equiv.
- ${ }^{9}\left[\frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{3}{2} x^{2}+9 x\right]_{-1}^{3}$ or equiv.
- ${ }^{10} 21 \frac{1}{3}$

5. Two sequences are generated by the recurrence relations $u_{n+1}=a u_{n}+10$ and $v_{n+1}=a^{2} v_{n}+16$.

The two sequences approach the same limit as $n \rightarrow \infty$.
Determine the value of a and evaluate the limit.

Part	Marks	Level	Calc.	Content	Answer	U1 OC4
	4	C	NC	A13	$a=\frac{3}{5}, L=25$	2000 P1 Q5
	1	A/B	NC	A12		

- ${ }^{1}$ ss: know how to find limit
${ }^{2}{ }^{2}$ pd: process
${ }^{3}$ pd: process
${ }^{-4}$ ic: interpret coeff. of u_{n}
$\bullet{ }^{5}$ pd: process
${ }^{1} L=a L+10$ or $L=a^{2} L+16$ or $L=\frac{b}{1-a}$
$\bullet^{2} L=\frac{10}{1-a}$ or $L=\frac{16}{1-a^{2}}$
- $\frac{10}{1-a}$ or $\frac{16}{1-a^{2}}$
- $40 a^{2}-16 a+6=0$
- ${ }^{5} a=\frac{3}{5}$ and $L=25$
[SQA] 6. For what range of values of k does the equation $x^{2}+y^{2}+4 k x-2 k y-k-2=0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	A	NC	G9, A17	for all k	2000 P1 Q6

${ }^{1}$ ss: know to examine radius

- $1 \quad g=2 k, f=-k, c=-k-2$
${ }^{2}$ pd: process stated or implied by \bullet^{2}
${ }^{3}$ pd: process
- ${ }^{4}$ ic: interpret quadratic inequation
- ${ }^{2} r^{2}=5 k^{2}+k+2$
\bullet^{5} ic: interpret quadratic inequation
- ${ }^{3}$ (real $\left.r \Rightarrow\right) 5 k^{2}+k+2>0($ accept $\geq)$
${ }^{-}{ }^{4}$ use discr. or complete sq. or diff.
${ }^{5}$ true for all k

7. VABCD is a pyramid with a rectangular base $A B C D$.

Relative to some appropriate axes,
$\overrightarrow{\mathrm{VA}}$ represents $-7 \boldsymbol{i}-13 j-11 k$
$\overrightarrow{\mathrm{AB}}$ represents $6 i+6 j-6 k$
$\overrightarrow{\mathrm{AD}}$ represents $8 \boldsymbol{i}-4 \boldsymbol{j}+4 \boldsymbol{k}$.
K divides BC in the ratio 1:3.

Find $\overrightarrow{\mathrm{VK}}$ in component form.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	3	C	CN	G25, G21, G20	$\left(\begin{array}{c}1 \\ -8 \\ -16\end{array}\right)$	2000 P1 Q7

${ }^{1}$ ss: recognise crucial aspect
${ }^{2}{ }^{2}$ ic: interpret ratio
\bullet^{3} pd: process components

- $\frac{\overrightarrow{\mathrm{VK}}}{\overrightarrow{\mathrm{VK}}}=\stackrel{\overrightarrow{\mathrm{VB}}}{=}+\overrightarrow{\mathrm{BK}} \overrightarrow{\mathrm{VA}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BK}}$ or
$\bullet \overrightarrow{\mathrm{BK}}=\frac{1}{4} \overrightarrow{\mathrm{BC}}$ or $\frac{1}{4} \overrightarrow{\mathrm{AD}}$ or $\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$ or $\left(\begin{array}{c}-1 \\ -7 \\ -17\end{array}\right)$
-3 $\overrightarrow{\mathrm{VK}}=\left(\begin{array}{c}1 \\ -8 \\ -16\end{array}\right)$
[SQA] 8. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$.
If $f^{\prime}(x)=\sin (3 x)$ express y in terms of x.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	A/B	NC	C18, C23	$y=-\frac{1}{3} \cos (3 x)+\frac{7}{6}$	2000 P1 Q8

- 1 ss: know to integrate
${ }^{\bullet}{ }^{2} \mathrm{pd}$: integrate
- ${ }^{3}$ ic: interpret $\left(\frac{\pi}{9}, 1\right)$
${ }^{4}$ pd: process
- ${ }^{1} y=\int \sin (3 x) d x$ stated or implied by
- $2-\frac{1}{3} \cos (3 x)$
-3 $1=-\frac{1}{3} \cos \left(\frac{3 \pi}{9}\right)+c$ or equiv.
- ${ }^{4} c=\frac{7}{6}$

9. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
	2	C	NC	A28	2	2000 P1 Q9
	1	A/B	NC	A28		
- ${ }^{1}$ pd: use $\log _{a} x+\log _{a} y=\log _{a} x y$ - ${ }^{2}$ pd: use $\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}$ ${ }^{3}$ pd: use $\log _{a} a=1$					- ${ }^{1} \log _{5} 100-\log _{5} 4$ - ${ }^{2} \log _{5} 25$ ${ }^{3} \quad 2$	

[SQA] 10. Find the maximum value of $\cos x-\sin x$ and the value of x for which it occurs in the interval $0 \leq x \leq 2 \pi$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
	6	A/B	CN	T14	\max value $\quad \sqrt{2} \quad$ when $x=\frac{7 \pi}{4}$	2000 P1 Q10

Higher 2000 - Paper 2 Solutions

1. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	5	C	CN	C5	$x+y=1$	2000 P2 Q1
(b)	5	C	CN	A23, A22, A21	$(-1,-6)$	

-1 ss: know to differentiate
$\bullet^{2} \mathrm{pd}$: differentiate correctly
${ }^{3}$ ss: know that gradient $=f^{\prime}(1)$
${ }^{4}$ ss: know that y-coord $=f(1)$
${ }^{5}$ ic: state equ. of line
${ }^{6}{ }^{6}$ ss: equate equations
${ }^{-7} \mathrm{pd}$: arrange in standard form

- 8 ss: know how to solve cubic
${ }^{9}$ pd: process
${ }^{10}$ ic: interpret
- ${ }^{1} y^{\prime}=\ldots$
- $2 x^{2}-6 x+2$
- $y^{\prime}(1)=-1$
- $4(1)=0$
- $5 y-0=-1(x-1)$
- $62 x-4=x^{3}-3 x^{2}+2 x$
- $x^{3}-3 x^{2}+4=0$
-8 \(\begin{gathered}\cdots

\end{gathered}\)| 1 | -3 | 0 | 4 |
| :---: | :---: | :---: | :---: |
| | \cdots | \cdots | \cdots |
| | \cdots | \cdots | \cdots |

- ${ }^{9}$ identify $x=-1$ from working
${ }^{10}(-1,-6)$

2. (a) Find the equation of AB , the perpendicular bisector of the line joing the points $P(-3,1)$ and $\mathrm{Q}(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T.

Write down

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	4	C	CN	G7	$x+2 y=9$	2000 P2 Q2
(b)	3	C	CN	G10	$(x-1)^{2}+(y-4)^{2}=25$	
(c)	2	C	CN	G11, G8	(i) $y=9,(i i) \mathrm{T}(-9,9)$	

- ${ }^{1}$ ss: know to use midpoint
${ }^{\bullet}{ }^{2} \mathrm{pd}$: process gradient of PQ
\bullet^{3} ss: know how to find perp. gradient
${ }^{4}$ ic: state equ. of line
- 5 ic: interpret "parallel to y-axis"
${ }^{-6}$ pd: process radius
\bullet ic: state equ. of circle
\bullet^{8} ic: interpret diagram
\bullet - ss: know to use equ. of AB
- ${ }^{1}$ midpoint $=(-1,5)$
- ${ }^{2} m_{\mathrm{PQ}}=\frac{9-1}{1-(-1)}$
- $m_{\perp}=-\frac{1}{2}$
- $4-5=-\frac{1}{2}(x-(-1))$
$\bullet^{5} y_{\mathrm{C}}=4$ stated or implied by \bullet^{7}
${ }^{6}$ radius $=5$ or equiv.
stated or implied by ${ }^{7}$
- ${ }^{7}(x-1)^{2}+(y-4)^{2}=25$
- $8=9$
- ${ }^{9} \mathrm{~T}=(-9,9)$

3. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	2	C	CN	A4	$3-\frac{3}{x}$	2000 P2 Q3
(b)	2	C	CN	A4	x	

- ${ }^{1}$ ic: interpret composite func.
${ }^{2}$ pd: process
- ${ }^{3}$ ic: interpret composite func.
${ }^{4}$ pd: process
${ }^{5}$ pd: process
- 1 f $\left(\frac{3}{x}\right)$ stated or implied by \bullet^{2}
- $23-\frac{3}{x}$
- $\quad p\left(\frac{3}{3-x}\right)$ stated or implied by \bullet^{4}
- $3-\frac{3}{\frac{3}{3-x}}$
${ }^{5} x$

4. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A,
 is given by

$$
\begin{equation*}
A=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3} . \tag{3}
\end{equation*}
$$

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(a)	2	C	CN	A19	$y=4 x-x^{2}$	2000 P2 Q4
(b)	3	C	CN	C16	proof	

- ${ }^{1}$ ic: state standard form
${ }^{2}{ }^{2}$ pd: process for x^{2} coeff.
-3 ss: know to integrate
${ }^{4} \mathrm{pd}$: integrate correctly
${ }^{\bullet}$ pd: process limits and complete proof
- ${ }^{1} a x(x-4)$
- ${ }^{2} a=-1$
- \int_{2}^{k} (function from (a))
- ${ }^{4}-\frac{1}{3} x^{3}+2 x^{2}$
- ${ }^{5}-\frac{1}{3} k^{3}+2 k^{2}-\left(-\frac{8}{3}+8\right)$

5. Solve the equation $3 \cos 2 x^{\circ}+\cos x^{\circ}=-1$ in the interval $0 \leq x \leq 360$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	5	A/B	CR	T10	$60,131 \cdot 8,228 \cdot 2,300$	2000 P2 Q5

- ${ }^{1}$ ss: know to use $\cos 2 x=2 \cos ^{2} x-1$
${ }^{2}{ }^{2} \mathrm{pd}$: process
- ${ }^{3}$ ss: know to/and factorise quadratic
${ }^{4}$ pd: process
${ }^{5}$ pd: process
- ${ }^{1} 3\left(2 \cos ^{2} x^{\circ}-1\right)$
- $26 \cos ^{2} x^{\circ}+\cos x^{\circ}-2=0$
- $^{3}\left(2 \cos x^{\circ}-1\right)\left(3 \cos x^{\circ}+2\right)$
${ }^{4}{ }^{4} \cos x^{\circ}=\frac{1}{2}, x=60,30$
${ }^{5} \cos x^{\circ}=-\frac{2}{3}, x=132,228$
[SQA] 6. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end. The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron.
Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the
 solid.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	6	A/B	CN	C11	$x=2$	2000 P2 Q6

-1 ss: know to differentiate
$\bullet^{2} \mathrm{pd}$: process
$\bullet 3$ ss: know to set $f^{\prime}(x)=0$
${ }^{4}$ pd: deal with x^{-2}
${ }^{5}$ pd: process

- 6 ic: check for minimum
- ${ }^{1} A^{\prime}(x)=\ldots$
- $2 \frac{3 \sqrt{3}}{2}\left(2 x-16 x^{-2}\right)$ or $3 \sqrt{3} x-24 \sqrt{3} x^{-2}$
- $A^{\prime}(x)=0$
- ${ }^{4}-\frac{16}{x^{2}}$ or $-\frac{24 \sqrt{3}}{x^{2}}$
${ }^{-5} x=2$

${ }^{\bullet 6}$| x | 2^{-} | 2 | 2^{+} |
| :---: | :---: | :---: | :---: |
| $A^{\prime}(x)$ | $-v e$ | 0 | $+v e$ |

so $x=2$ is min .
7. For what value of t are the vectors $u=\left(\begin{array}{c}t \\ -2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{c}2 \\ 10 \\ t\end{array}\right)$ perpendicular?

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	2	C	CN	G27	$t=4$	2000 P2 Q7

- ${ }^{1}$ ss: know to use scalar product
- ${ }^{1} u . v=2 t-20+3 t$
${ }^{2}$ ic: interpret scalar product
- ${ }^{2} u \cdot v=0 \Rightarrow t=4$
[SQA]

8. Given that $f(x)=(5 x-4)^{\frac{1}{2}}$, evaluate $f^{\prime}(4)$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	1	C	CN	C21	$\frac{5}{8}$	2000 P2 Q8
	2	A/B	CN	C21		
- ${ }^{1}$ pd: differentiate power $\bullet 2$ pd: differentiate 2 nd function - 3 pd: evaluate $f^{\prime}(x)$					-1 $\frac{1}{2}(5 x-4)^{-\frac{1}{2}}$ $\bullet^{2} \times 5$ -3 $f^{\prime}(4)=\frac{5}{8}$	

9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm .

Coordinates axes are taken as shown.

(a) The point A has coordinates $(0,9,8)$ and C has coordinates $(17,0,8)$.

Write down the coordinates of B.
(b) Calculate the size of angle ABC .

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
(a)	1	C	CN	G22	B $(3,2,15)$	2000 P2 Q9
(b)	6	C	CR	G28	$92 \cdot 5^{\circ}$	

- ${ }^{1}$ ic: interpret 3-d representation
- ${ }^{2}$ ss: know to use scalar product
${ }^{\bullet}$ pd: process vectors
${ }^{4} \mathrm{pd}$: process vectors
${ }^{5}$ pd: process lengths
- ${ }^{6}$ pd: process scalar product
${ }^{6}$ pd: evaluate scalar product
$\bullet^{1} \mathrm{~B}=(3,2,15)$ treat $\left(\begin{array}{c}3 \\ 2 \\ 15\end{array}\right)$ as bad form
- $2 \cos \mathrm{ABC}=\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}$
- $3 \overrightarrow{\mathrm{BA}}=\left(\begin{array}{c}-3 \\ 7 \\ -7\end{array}\right)$
$\bullet \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}14 \\ -2 \\ -7\end{array}\right)$
${ }^{5}|\overrightarrow{\mathrm{BA}}|=\sqrt{107},|\overrightarrow{\mathrm{BC}}|=\sqrt{249}$
- $6 \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=-7$
$\bullet^{7} \mathrm{~A} \widehat{B C}=92.5^{\circ}$

Higher Mathematics
[SQA] 10. Find $\int \frac{1}{(7-3 x)^{2}} d x$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	2	A/B	CN	C22, C14	$\frac{1}{3(7-3 x)}+c$	2000 P2 Q10
•1 pd: integrate function		$\bullet^{1} \frac{1}{-1}(7-3 x)^{-1}$				
\bullet^{2}	pd: deal with function of function	$\bullet^{2} \times \frac{1}{-3}$				

11. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of P and Q.

It is given that $P=\log _{e} p$ and $Q=\log _{e} q$.
(b) Show that p and q satisfy a relationship of the form $p=a q^{b}$, stating the values of a and b.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
(a)	2	A/B	CR	G3	$P=0 \cdot 6 Q+1 \cdot 8$	2000 P2 Q11
(b)	4	A/B	CR	A33	$a=6 \cdot 05, b=0 \cdot 6$	

- ${ }^{1}$ ic: interpret gradient
\bullet^{2} ic: state equ. of line
${ }^{3}$ ic: interpret straight line
- ${ }^{4}$ ss: know how to deal with x of $x \log y$
${ }^{5}$ ss: know how to express number as \log
- ic: interpret sum of two logs
- $1 \quad m=\frac{1.8}{3}=0.6$
${ }^{2} \quad P=0 \cdot 6 Q+1 \cdot 8$
Method 1
- ${ }^{3} \log _{e} p=0.6 \log _{e} q+1.8$
${ }^{-4} \log _{e} q^{0.6}$
${ }^{\cdot}{ }^{5} \log _{e} 6 \cdot 05$
${ }^{.6} p=6.05 q^{0.6}$
Method 2
$\ln p=\ln a q^{b}$
${ }^{3} \ln p=\ln a+b \ln q$
${ }^{4} \ln p=0.6 \ln q+1.8$ stated or implied by \bullet^{5} or \bullet^{6}
${ }^{-5} \ln a=1 \cdot 8$
- ${ }^{6} a=6.05, b=0.6$

