X056/301

NATIONAL QUALIFICATIONS 2000 THURSDAY, 25 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 There are three Sections in this paper.

Section A assesses the compulsory units Mathematics 1 and 2. Section B assesses the optional unit Mathematics 3. Section C assesses the optional unit Statistics.

Candidates must attempt all questions in Section A (Mathematics 1 and 2) and either Section B (Mathematics 3)

- or Section C (Statistics).
- 3 Full credit will be given only where the solution contains appropriate working.
- 4 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a||b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

Table of standard derivatives and integrals:

f(x)	f'(x)
sin ax	$a\cos ax$
cosax	$-a\sin ax$

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

Statistics:

Sample standard deviation:

$$s = \sqrt{\frac{1}{n-1}\sum(x_i - \overline{x})^2} = \sqrt{\frac{1}{n-1}\left(\sum x_i^2 - \frac{1}{n}\left(\sum x_i\right)^2\right)} \text{ where } n \text{ is the sample size.}$$

Sums of squares and products:
$$S_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2$$

$$S_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2$$

$$S_{xy} = \sum \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right) = \sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i$$

Linear regression:

The equation of the least squares regression line of y on xis given by $y = \alpha + \beta x$, where estimates for α and β , α and β ,

are given by: $a = \overline{y} - b\overline{x}$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

Product moment correlation coefficient r:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

ALL candidates should attempt this Section.

A1. On the coordinate diagram shown, A is the point (6, 8) and B is the point (12, -5). Angle AOC = p and angle COB = q.

Find the exact value of sin(p+q).

A2. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3, 0).

(a) Find the coordinates of the turning point at A.

4

- (b) Hence sketch the graph of y = g(x) where g(x) = f(x + 2) + 4. Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
 - 2
- (c) Write down the range of values of k for which g(x) = k has 3 real roots.

[Turn over

3

4

1

A3. Find the size of the angle a° that the line joining the points A(0, -1) and $B(3\sqrt{3}, 2)$ makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and $y = x^3 - 12x + 1$. The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

- (a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
 - (ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (b) The point A is (-1, 12) and B is (3, -8).Find the area enclosed between the two curves.

A5. Two sequences are generated by the recurrence relations $u_{n+1}=au_n+10$ and $v_{n+1}=a^2v_n+16$.

The two sequences approach the same limit as $n \to \infty$.

Determine the value of a and evaluate the limit.

5

A6. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ represent a circle?

 $[END\ OF\ SECTION\ A]$

Candidates should now attempt
EITHER Section B (Mathematics 3) on Page six
OR Section C (Statistics) on Pages seven and eight

[Turn over

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. VABCD is a pyramid with a rectangular base ABCD.

Relative to some appropriate axes,

 \rightarrow VA represents -7i - 13j - 11k

 \rightarrow AB represents 6i + 6j - 6k

 \rightarrow AD represents $8\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$.

K divides BC in the ratio 1:3.

Find VK in component form.

3

B8. The graph of y = f(x) passes through the point $(\frac{\pi}{9}, 1)$.

If $f'(x) = \sin(3x)$, express y in terms of x.

4

B9. Evaluate $\log_5 2 + \log_5 50 - \log_5 4$.

3

B10. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

[END OF SECTION B]

X056/302

NATIONAL QUALIFICATIONS 2000 THURSDAY, 25 MAY 10.30 AM - 12.00 NOON MATHEMATICS HIGHER Paper 2

Read Carefully

- 1 Calculators may be used in this paper.
- 2 There are three Sections in this paper.

Section A assesses the compulsory units Mathematics 1 and 2.

Section B assesses the optional unit Mathematics 3.

Section C assesses the optional unit Statistics.

Candidates must attempt all questions in Section A (Mathematics 1 and 2) and either Section B (Mathematics 3)

- or Section C (Statistics).
- 3 Full credit will be given only where the solution contains appropriate working.
- 4 Answers obtained by readings from scale drawings will not receive any credit.

SECTION A (Mathematics 1 and 2)

ALL candidates should attempt this Section.

- A1. The diagram shows a sketch of the graph of $y = x^3 3x^2 + 2x$.
 - (a) Find the equation of the tangent to this curve at the point where x = 1.
 - (b) The tangent at the point (2, 0) has equation y = 2x 4. Find the coordinates of the point where this tangent meets the curve again.

- A2. (a) Find the equation of AB, the perpendicular bisector of the line joining the points P(-3, 1) and Q(1, 9).
 - (b) C is the centre of a circle passing through P and Q. Given that QC is parallel to the y-axis, determine the equation of the circle.
 - (c) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

- **A3.** f(x) = 3 x and $g(x) = \frac{3}{x}$, $x \ne 0$.
 - (a) Find p(x) where p(x) = f(g(x)).
 - (b) If $q(x) = \frac{3}{3-x}$, $x \ne 3$, find p(q(x)) in its simplest form.

2

3

A4. The parabola shown crosses the x-axis at (0, 0) and (4, 0), and has a maximum at (2, 4).

The shaded area is bounded by the parabola, the x-axis and the lines x = 2 and x = k.

(b) Hence show that the shaded area, A, is given by

$$A = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}.$$

- **A5.** Solve the equation $3\cos 2x^{\circ} + \cos x^{\circ} = -1$ in the interval $0 \le x \le 360$.
- **A6.** A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.

The surface area, A, of the solid is given by

$$A(x) = \frac{3\sqrt{3}}{2} \left(x^2 + \frac{16}{x} \right)$$

where x is the length of each edge of the tetrahedron.

Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

6

[END OF SECTION A]

Candidates should now attempt

EITHER Section B (Mathematics 3) on Pages five and six

OR Section C (Statistics) on Pages seven and eight

SECTION B (Mathematics 3)

Marks

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. For what value of t are the vectors
$$u = \begin{pmatrix} t \\ -2 \\ 3 \end{pmatrix}$$
 and $v = \begin{pmatrix} 2 \\ 10 \\ t \end{pmatrix}$ perpendicular?

B8. Given that
$$f(x) = (5x - 4)^{\frac{1}{2}}$$
, evaluate $f'(4)$.

B9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm.
Coordinate axes are taken as shown.

- (a) The point A has coordinates (0, 9, 8) and C has coordinates (17, 0, 8).
 Write down the coordinates of B.
- (b) Calculate the size of angle ABC.

[Turn over

1

2

- **B11.** The results of an experiment give rise to the graph shown.
 - (a) Write down the equation of the line in terms of P and Q.

It is given that $P = \log_e p$ and $Q = \log_e q$.

(b) Show that p and q satisfy a relationship of the form $p = aq^b$, stating the values of a and b.

[END OF SECTION B]

O

y

4

Higher Mathematics

Higher 2000 - Paper 1 Solutions

1. On the coordinate diagram shown, A is the [SQA] point (6,8) and B is the point (12, Ps) fragged lacements AOC = p and angle COB = q.

Find the exact value of sin(p + q).

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	T9	63 65	2000 P1 Q1

ss: know to use trig expansion
 pd: process missing sides

•³ ic: interpret data

pd: process

• $\sin p \cos q + \cos p \sin q$ • $\cos p \sin q$

O

 χ

y

4

2

1

[SQA] 2. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3,0).

- (a) Find the coordinates of the turning point at A.
- (b) Hence sketch the graph of y = g(x) where g(x) = f(x+2) + 4. Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
- (c) Write down the range of values of k for which g(x) = k has 3 real roots.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
(a)	4	С	NC	C8	A(1,4)	2000 P1 Q2
(b)	2	С	NC	A3	sketch (translate 4 up, 2 left)	
(c)	1	A/B	NC	A2	4 < k < 8	

- •¹ ss: know to differentiate
- ² pd: differentiate correctly
- 3 ss: know gradient = 0
- •⁴ pd: process
- ⁵ ic: interpret transformation
- 6 ic: interpret transformation
- •⁷ ic: interpret sketch

- $\bullet^1 \frac{dy}{dx} = \dots$
- $e^2 \frac{dy}{dx} = 3x^2 12x + 9$
- $\int_{0}^{4x} 3x^2 12x + 9 = 0$
- $\bullet^4 A = (1.4)$

translate f(x) 4 units up, 2 units left

- sketch with coord. of A'(-1,8)
- 6 sketch with coord. of B'(1,4)
- 7 4 < k < 8 (accept 4 $\leq k \leq$ 8)

O χ

y

3

Higher Mathematics

[SQA]

3. Find the size of the angle a° that the line joining the points A(0,-1) and $B(3\sqrt{3},2)$ makes with the positive direction of the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	NC	G2	30	2000 P1 Q3

- \bullet^1 ss: know how to find gradient or
- pd: process
- ic: interpret exact value
- tan a = gradient stated or implied by
- 3 a = 30

replacements

O

 χ

y

y

4

1

5

4. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and [SQA] $y = x^3 - 12x + 1$.

> The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

- (a) (i) Find the x-coordinates of the point of the curves where the gradients are equal.
 - (ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (*b*) The point A is (-1, 12) and B is (3, -8).

Find the area enclosed between the two curves.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(ai)	4	С	NC	C4	$x = \frac{1}{3} \text{ and } x = 3$	2000 P1 Q4
(aii)	1	С	NC	CGD	parallel and coincident	
(b)	5	С	NC	C17	$21\frac{1}{3}$	

- •¹ ss: know to diff. and equate
- ² pd: differentiate
- ³ pd: form equation
- ic: interpret solution
- ic: interpret diagram
- ss: know how to find area between
- ic: interpret limits
- pd: form integral
- pd: process integration
- pd: process limits

- •¹ find derivatives and equate
- 2 $3x^2 12$ and 10x 15
- $\bullet^3 3x^2 10x + 3 = 0$
- $\bullet^4 \ \ x = 3, \ x = \frac{1}{3}$
- tangents at $x = \frac{1}{3}$ are parallel, at x = 3 coincident
- 6 \int (cubic parabola) or \int (cubic) $-\int$ (parabola)
- •⁷ $\int_{-1}^{3} \cdots dx$ •⁸ $\int (x^3 5x^2 + 3x + 9) dx$ or equiv.
- $\left[\frac{1}{4}x^4 \frac{5}{3}x^3 + \frac{3}{2}x^2 + 9x\right]_{-1}^3$ or equiv.
- \bullet^{10} $21\frac{1}{2}$

replacements

 χ y

O

O χ y

5

5

5. Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 10$ and [SQA] $v_{n+1} = a^2 v_n + 16.$

The two sequences approach the same limit as $n \to \infty$.

Determine the value of *a* and evaluate the limit.

Part	Marks	Level	Calc.	Content	Answer	U1 OC4
	4	С	NC	A13	$a = \frac{3}{5}, L = 25$	2000 P1 Q5
	1	A/B	NC	A12		

ss: know how to find limit

pd: process

pd: process

•⁴ ic: interpret coeff. of u_n

•⁵ pd: process

• 1 L = aL + 10 or $L = a^{2}L + 16$ or $L = \frac{b}{1-a}$ $L = \frac{b}{1-a}$ •2 $L = \frac{10}{1-a}$ or $L = \frac{16}{1-a^2}$ •3 $\frac{10}{1-a}$ or $\frac{16}{1-a^2}$ •4 $10a^2 - 16a + 6 = 0$

• $a = \frac{3}{5}$ and L = 25

6. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ [SQA] represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	A	NC	G9, A17	for all <i>k</i>	2000 P1 Q6

•¹ ss: know to examine radius

•² pd: process

•³ pd: process

• 4 ic: interpret quadratic inequation

interpret quadratic inequation

 \bullet^1 g = 2k, f = -k, c = -k - 2stated or implied by \bullet^2

 $r^2 = 5k^2 + k + 2$

•3 (real $r \Rightarrow$) $5k^2 + k + 2 > 0$ (accept \geq)

• 4 use discr. **or** complete sq. **or** diff.

• 5 true for all k

O

 χ y

PSfrag replacements

O y

[SQA]

7. VABCD is a pyramid with a rectangular base ABCD.

Relative to some appropriate axes,

 \overrightarrow{VA} represents -7i - 13j - 11k

 \overrightarrow{AB} represents 6i + 6j - 6k \overrightarrow{AD} represents 8i - 4j + 4k. K divides BC in the ratio 1:3.

3

Pa	art	Marks	Level	Calc.	Content	Answer	U3 OC1
		3	С	CN	G25, G21, G20	$\begin{pmatrix} 1 \\ -8 \\ -16 \end{pmatrix}$	2000 P1 Q7

- ss: recognise crucial aspect
- •² ic: interpret ratio

Find \overrightarrow{VK} in component form.

pd: process components

$$\bullet^1 \ \overrightarrow{\overrightarrow{VK}} = \overrightarrow{\overrightarrow{VB}} + \overrightarrow{\overrightarrow{BK}} + \overrightarrow{\overrightarrow{AB}} + \overrightarrow{\overrightarrow{BK}} \quad \text{or}$$

•
$$\overrightarrow{VK} = \overrightarrow{VB} + \overrightarrow{BK}$$
 or $\overrightarrow{VK} = \overrightarrow{VB} + \overrightarrow{BK}$ or $\overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BK}$ or $\overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AB} + \overrightarrow$

$$\begin{pmatrix} -1 \\ -7 \\ -17 \end{pmatrix}$$

$$\bullet^3 \overrightarrow{VK} = \begin{pmatrix} 1 \\ -8 \\ -16 \end{pmatrix}$$

[SQA]

8. The graph of y = f(x) passes through the point $(\frac{\pi}{9}, 1)$.

If $f'(x) = \sin(3x)$ express y in terms of x.

4

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	A/B	NC	C18, C23	$y = -\frac{1}{3}\cos(3x) + \frac{7}{6}$	2000 P1 Q8

- ss: know to integrate
- pd: integrate
- ic: interpret $(\frac{\pi}{9}, 1)$
- pd: process

- $y = \int \sin(3x) \, dx \quad stated \ or \ implied \ by$
- $\frac{1}{2} \frac{1}{3}\cos(3x)$ $\frac{3}{3} = -\frac{1}{3}\cos(\frac{3\pi}{9}) + c$ or equiv. $\frac{4}{3} = \frac{7}{6}$

replacements

O

 χ

O

Higher Mathematics

y

9. Evaluate $\log_5 2 + \log_5 50 - \log_5 4$. [SQA]

3

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
	2	С	NC	A28	2	2000 P1 Q9
	1	A/B	NC	A28		

- •¹ pd: use $\log_a x + \log_a y = \log_a xy$ •² pd: use $\log_a x \log_a y = \log_a \frac{x}{y}$ •³ pd: use $\log_a a = 1$

- $\bullet^1 \log_5 100 \log_5 4$
- $\bullet^2 \log_5 25$

10. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in [SQA] the interval $0 \le x \le 2\pi$.

6

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
	6	A/B	CN	T14	$\begin{array}{ccc} \max & \text{value} & \sqrt{2} & \text{when} \\ x = \frac{7\pi}{4} & & \end{array}$	2000 P1 Q10

- ss: use e.g. k cos(x + a)
 ic: expand chosen rule
 pd: compare coefficients
 pd: process
 pd: process
 ic: interpret trig expression
- •¹ e.g. use $k \cos(x + a)$ •² $k \cos x \cos a k \sin x \sin a$
- $\bullet^3 k \cos a = 1$ and $k \sin a = 1$

- 4 $k = \sqrt{2}$ 5 $\tan a = 1$, $a = \frac{\pi}{4}$ (45° is bad form) 6 max. value = $\sqrt{2}$ when $x = \frac{7\pi}{4}$ (do *not accept* 45°)

[END OF QUESTIONS]

replacements

O

 χ

Higher 2000 - Paper 2 Solutions

1. The diagram shows a sketch of the [SQA] graph of $y = x^3 - 3x^2 + 2x$.

- (a) Find the equation of the tangent to this curve at the point where x = 1. PSfrag replacements
- (b) The tangent at the point (2,0) has equation y = 2x - 4. Find the coordinates of the point where this tangent meets the curve again.

5

5

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	5	C	CN	C5	x + y = 1	2000 P2 Q1
(b)	5	С	CN	A23, A22, A21	(-1, -6)	

Page 8

- ss: know to differentiate
- pd: differentiate correctly
- ss: know that gradient = f'(1)
- ss: know that y-coord = f(1)
- ic: state equ. of line
- ss: equate equations
- pd: arrange in standard form
- ss: know how to solve cubic
- pd: process
- ic: interpret

- $\bullet^1 y' = \dots$
- $e^2 3x^2 6x + 2$
- $\bullet^3 y'(1) = -1$
- y(1) = 0
- \bullet^5 y 0 = -1(x 1)
- \bullet^6 $2x 4 = x^3 3x^2 + 2x$

- 9 identify x = -1 from working
- \bullet^{10} (-1, -6)

4

3

2

Higher Mathematics

2. (a) Find the equation of AB, the [SQA] perpendicular bisector of the line joing the points P(-3,1)Q(1,9). PSfrag replacements

- (b) C is the centre of a circle passing through P and Q. Given that QC is parallel to the *y*-axis, determine the equation of the circle.
- (c) The tangents at P and Q intersect at

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	4	C	CN	G7	x + 2y = 9	2000 P2 Q2
(b)	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(c)	2	С	CN	G11, G8	(i) $y = 9$, (ii) $T(-9, 9)$	

- ss: know to use midpoint
- pd: process gradient of PQ
- ss: know how to find perp. gradient
- state equ. of line
- interpret "parallel to y-axis"
- pd: process radius
- state equ. of circle
- interpret diagram
- ss: know to use equ. of AB

- midpoint = (-1,5)• $m_{PQ} = \frac{9-1}{1-(-1)}$

- $m_{\perp} = -\frac{1}{2}$ $y 5 = -\frac{1}{2}(x (-1))$
- 5 $y_{\rm C} = 4$ stated or implied by 7
- 6 radius = 5 or equiv. stated or implied by \bullet^7
- $\bullet^7 (x-1)^2 + (y-4)^2 = 25$
- •8 y = 9
- \bullet^9 T= (-9,9)

O

 χ

O χ

y

Higher Mathematics

[SQA]

3. f(x) = 3 - x and $g(x) = \frac{3}{x}, x \neq 0$.

(a) Find p(x) where p(x) = f(g(x)).

3

2

(b) If
$$q(x) = \frac{3}{3-x}$$
, $x \neq 3$, find $p(q(x))$ in its simplest form.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	2	С	CN	A4	$3 - \frac{3}{x}$	2000 P2 Q3
(b)	2	С	CN	A4	x	
(b)	1	A/B	CN	A4		

- •¹ ic: interpret composite func.
- •² pd: process
- ic: interpret composite func.
- 4 pd: process
- •⁵ pd: process

- $f\left(\frac{3}{x}\right)$ stated or implied by $\frac{3}{x}$
- $p\left(\frac{3}{3-x}\right)$ stated or implied by 4• $3-\frac{3}{\frac{3}{2}}$

[SQA]

4. The parabola shown crosses the x-axis at (0,0) and (4,0), and has a maximum at (2,4).PSfrag replacements

The shaded area is bounded by the parabola, the x-axis and the lines x = 2and x = k.

(b) Hence show that the shaded area, A, is given by

$$A = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}.$$

3

2

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(a)	2	С	CN	A19	$y = 4x - x^2$	2000 P2 Q4
(b)	3	С	CN	C16	proof	

- •¹ ic: state standard form
- pd: process for x^2 coeff.
- ss: know to integrate
- pd: integrate correctly
- pd: process limits and complete
- $\bullet^1 \quad ax(x-4) \\
 \bullet^2 \quad a = -1$
- $^{3}\int_{2}^{k} (\text{function from (a)})$ $^{4}\frac{1}{3}x^{3} + 2x^{2}$ $^{5}\frac{1}{3}k^{3} + 2k^{2} \left(-\frac{8}{3} + 8\right)$

replacements

O χ y

 χ y

5

6

5. Solve the equation $3\cos 2x^{\circ} + \cos x^{\circ} = -1$ in the interval $0 \le x \le 360$. [SQA]

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	5	A/B	CR	T10	60, 131.8, 228.2, 300	2000 P2 Q5

- •¹ ss: know to use $\cos 2x = 2\cos^2 x 1$
- pd: process
- ss: know to/and factorise quadratic
- pd: process
- pd: process

- $\bullet^1 \ 3(2\cos^2 x^{\circ} 1)$
- $e^2 6\cos^2 x^\circ + \cos x^\circ 2 = 0$
- $^3 (2\cos x^\circ 1)(3\cos x^\circ + 2)$
- $\cos x^{\circ} = \frac{1}{2}, x = 60,30$ $\cos x^{\circ} = -\frac{2}{3}, x = 132,228$
- 6. A goldsmith has built up a solid which consists of a triangular [SQA] prism of fixed volume with a regular tetrahedron at each end.

The surface area, A, of the solid is given by

$$A(x) = \frac{3\sqrt{3}}{2} \left(x^2 + \frac{16}{x} \right)$$

PSfrag replacements

where *x* is the length of each edge of the tetrahedron.

Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	6	A/B	CN	C11	x = 2	2000 P2 Q6

- ss: know to differentiate
- pd: process
- ss: know to set f'(x) = 0
- pd: deal with x^{-2}
- pd: process
- check for minimum

- \bullet^1 $A'(x) = \dots$
- $^2 \frac{3\sqrt{3}}{2}(2x-16x^{-2})$ or $3\sqrt{3}x-24\sqrt{3}x^{-2}$
- $\bullet^3 \ A'(x) = 0$
- 4 $-\frac{16}{x^2}$ or $-\frac{24\sqrt{3}}{x^2}$
- A'(x) -ve so x = 2 is min.

O

 χ y

O

Higher Mathematics

Part

y

3

7. For what value of t are the vectors $\mathbf{u} = \begin{pmatrix} t \\ -2 \\ 3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 2 \\ 10 \\ t \end{pmatrix}$ perpendicular? 2 [SQA]

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	2	С	CN	G27	t=4	2000 P2 Q7

- •¹ ss: know to use scalar product
 •² ic: interpret scalar product
- u.v = 2t 20 + 3t• $u.v = 0 \Rightarrow t = 4$

8. Given that $f(x) = (5x - 4)^{\frac{1}{2}}$, evaluate f'(4). [SQA]

Marks	Level	Calc.	Content	Answer	U3 OC2
1	С	CN	C21	5 8	2000 P2 Q8
2	A/B	CN	C21		

- •¹ pd: differentiate power
 •² pd: differentiate 2nd function
- 3 pd: evaluate f'(x)

- $\begin{array}{ll} \bullet^1 & \frac{1}{2}(5x-4)^{-\frac{1}{2}} \\ \bullet^2 & \times 5 \\ \bullet^3 & f'(4) = \frac{5}{8} \\ \end{array}$

O

 $\boldsymbol{\chi}$ y

Ο

1

6

Higher Mathematics

x y

PSfrag Peplacements 9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm.

Coordinates axes are taken as shown.

- (a) The point A has coordinates (0,9,8) and C has coordinates (17,0,8). Write down the coordinates of B.
- (b) Calculate the size of angle ABC.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
(a)	1	С	CN	G22	B(3, 2, 15)	2000 P2 Q9
(b)	6	С	CR	G28	92·5°	

- •¹ ic: interpret 3-d representation
- •² ss: know to use scalar product
- •³ pd: process vectors
- •⁴ pd: process vectors
- pd: process lengths
- pd: process scalar product
- 7 pd: evaluate scalar product
- 1 B= (3,2,15) treat $\begin{pmatrix} 3\\2\\15 \end{pmatrix}$ as bad form
- $\bullet^3 \overrightarrow{BA} = \begin{pmatrix} -3 \\ 7 \\ -7 \end{pmatrix}$
- $\bullet^4 \overrightarrow{BC} = \begin{pmatrix} 14 \\ -2 \\ -7 \end{pmatrix}$
- •5 $|\overrightarrow{BA}| = \sqrt{107}, |\overrightarrow{BC}| = \sqrt{249}$
- $\bullet^6 \overrightarrow{BA}.\overrightarrow{BC} = -7$
- \bullet^7 A \hat{B} C = 92.5°

O

x

O

Higher Mathematics

 \boldsymbol{x} y

[SQA] 10. Find $\int \frac{1}{(7-3x)^2} dx$.

2

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	2	A/B	CN	C22, C14	$\frac{1}{3(7-3x)}+c$	2000 P2 Q10

•¹ pd: integrate function
•² pd: deal with function of function

y

O y

2

4

Higher Mathematics

PSfrag replacements

- 11. The results of an experiment give rise to the graph shown. [SQA]
 - (a) Write down the equation of the line in terms of P and Q.

It is given that $P = \log_e p$ and $Q = \log_e q$.

(b) Show that p and q satisfy a relationship of the form $p = aq^b$, stating the values of a and b.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
(a)	2	A/B	CR	G3	P = 0.6Q + 1.8	2000 P2 Q11
(b)	4	A/B	CR	A33	a = 6.05, b = 0.6	

- ic: interpret gradient
- ic: state equ. of line
- interpret straight line
- ss: know how to deal with x of
- ss: know how to express number as
- interpret sum of two logs

- $m = \frac{1 \cdot 8}{3} = 0.6$ P = 0.6Q + 1.8

Method 1

- \bullet ⁵ $\log_e 6.05$
- $\bullet^6 \quad p = 6.05q^{0.6}$

Method 2 $ln p = ln aq^b$

- $\bullet^3 \ln p = \ln a + b \ln q$
- •4 $\ln p = 0.6 \ln q + 1.8$ stated or implied by \bullet^5 or \bullet^6
- 5 $\ln a = 1.8$
- \bullet^6 a = 6.05, b = 0.6

[END OF QUESTIONS]

replacements

O

 χ y