X100/301

NATIONAL QUALIFICATIONS 2003 WEDNESDAY, 21 MAY 9.00 AM - 10.10 AM MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may <u>NOT</u> be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

- Find the equation of the line which passes through the point (-1, 3) and is perpendicular to the line with equation 4x + y - 1 = 0. 3 (a) Write $f(x) = x^2 + 6x + 11$ in the form $(x + a)^2 + b$. 2 (b) Hence or otherwise sketch the graph of y = f(x). 2
- 3. Vectors \boldsymbol{u} and \boldsymbol{v} are defined by $\boldsymbol{u} = 3\boldsymbol{i} + 2\boldsymbol{j}$ and $\boldsymbol{v} = 2\boldsymbol{i} - 3\boldsymbol{j} + 4\boldsymbol{k}$. Determine whether or not \boldsymbol{u} and \boldsymbol{v} are perpendicular to each other. 2
- A recurrence relation is defined by $u_{n+1} = pu_n + q$, where $-1 and <math>u_0 = 12$. 4.
 - (a) If $u_1 = 15$ and $u_2 = 16$, find the values of p and q.
 - (b) Find the limit of this recurrence relation as $n \to \infty$.

5. Given that
$$f(x) = \sqrt{x} + \frac{2}{x^2}$$
, find $f'(4)$.

6. A and B are the points (-1, -3, 2) and (2, -1, 1) respectively. B and C are the points of trisection of AD, that is AB = BC = CD. Find the coordinates of D.

7. Show that the line with equation y = 2x + 1 does not intersect the parabola with equation $y = x^2 + 3x + 4$.

8. Find
$$\int_{0}^{1} \frac{dx}{(3x+1)^{\frac{1}{2}}}$$
.

- 9. Functions $f(x) = \frac{1}{x-4}$ and g(x) = 2x + 3 are defined on suitable domains.
 - (a) Find an expression for h(x) where h(x) = f(g(x)). 2
 - (b) Write down any restriction on the domain of h. 1

[Turn over for Questions 10 to 12 on Page four

1.

2.

Page three

Marks

2

2

5

Marks

4

10. A is the point (8, 4). The line OA is inclined at an angle p radians to the x-axis.

- (a) Find the exact values of:
 - (i) sin(2p);
 - (ii) $\cos(2p)$.

The line OB is inclined at an angle 2p radians to the x-axis.

(b) Write down the exact value of the gradient of OB.

- 11. O, A and B are the centres of the three circles shown in the diagram below.
 - The two outer circles are congruent and each touches the smallest circle.
 - Circle centre A has equation $(x 12)^2 + (y + 5)^2 = 25$.
 - The three centres lie on a parabola whose axis of symmetry is shown by the broken line through A.

12. Simplify $3 \log_e(2e) - 2 \log_e(3e)$ expressing your answer in the form $A + \log_e B - \log_e C$ where A, B and C are whole numbers.

[END OF QUESTION PAPER]

Page four

X100/303

NATIONAL QUALIFICATIONS 2003 WEDNESDAY, 21 MAY 10.30 AM - 12.00 NOON MATHEMATICS HIGHER Units 1, 2 and 3 Paper 2

Read Carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

- 1. $f(x) = 6x^3 5x^2 17x + 6$.
 - (a) Show that (x 2) is a factor of f(x).
 - (b) Express f(x) in its fully factorised form.
- 2. The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y = a \sin(bx) + c$.

Determine the values of *a*, *b* and *c*.

3. The incomplete graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin.

Find the shaded area enclosed between the curves.

- 4. (a) Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 3x + 2$ at the point where x = 1.
 - (b) Show that this line is also a tangent to the circle with equation $x^2 + y^2 12x 10y + 44 = 0$ and state the coordinates of the point of contact.

Page three

[Turn over

[X100/303]

4

5

5

5. The diagram shows the graph of a function *f*.

f has a minimum turning point at (0, -3) and a point of inflexion at (-4, 2).

- (*a*) Sketch the graph of y = f(-x).
- (b) On the same diagram, sketch the graph of y = 2f(-x).

- 6. If $f(x) = \cos(2x) 3\sin(4x)$, find the exact value of $f'\left(\frac{\pi}{6}\right)$.
- 7. Part of the graph of $y = 2\sin(x^{\circ}) + 5\cos(x^{\circ})$ is shown in the diagram.
 - (a) Express $y = 2\sin(x^\circ) + 5\cos(x^\circ)$ in the form $k\sin(x^\circ + a^\circ)$ where k > 0 and $0 \le a < 360$.
 - (b) Find the coordinates of the minimum turning point P.
- 8. An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length x cm. The tank has a length of l cm.

(a) Show that the surface area to be lined, $A \operatorname{cm}^2$, is given by $A(x) = x^2 + \frac{432000}{x}$. 3

(b) Find the value of x which minimises this surface area.

9. The diagram shows vectors *a* and *b*.
If |*a*| = 5, |*b*| = 4 and *a*.(*a* + *b*) = 36, find the size of the acute angle θ between *a* and *b*.

- 10. Solve the equation $3\cos(2x) + 10\cos(x) 1 = 0$ for $0 \le x \le \pi$, correct to 2 decimal places.
- **11.** (a) (i) Sketch the graph of $y = a^x + 1$, a > 2.(ii) On the same diagram, sketch the graph of $y = a^{x+1}$, a > 2.**2**
 - (b) Prove that the graphs intersect at a point where the x-coordinate is $\log_a\left(\frac{1}{a-1}\right)$.

[END OF QUESTION PAPER]

2003 Mathematics

Higher

Finalised Marking Instructions

NB In and after the 2004 diet of examinations, the total number of marks for the Higher Mathematics examination will increase from 110 to 130. There will be <u>NO</u> other changes to the format of the examination.

To provide guidance to Centres on how the 20 additional marks will be allocated, additional pages have been added to the following 2003 Marking Instructions to show how an additional 20 marks could have been allocated to the 2003 examination.

Notes to the marking scheme for Higher Mathematics 2003

1. Illustrations where additional marks could be added to bring the overall total up to 130 are shown as follows:

Paper 1 extra marks are shown on pages 21-22 of the paper 1 m/s. Paper 2 extra marks are shown on pages 21-22 of the paper 2 m/s.

2. Legend for the coding at the beginning of each marking scheme:

1	2.1.1, 2.1.3	CN	С	03/101
question	syllabus code(s)	calculator neutral	level	catalogue no.
		NC non-calculator		
		C calculator required		

- Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made. This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
- 4. Correct working should be ticked (✓). This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (✓). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line. Work which is correct but inadequate to score any marks should be corrected with a double cross tick (X).
- 5. The total mark for each section of a question should be entered in red in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, not a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.

- 7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
- cont/

Mathematics Higher: Instructions to Markers

- 8. Do not penalise:
 - working subsequent to a correct answer
 - omission of units
 - bad form
 - legitimate variations in numerical answers
 - correct working in the "wrong" part of a question
- 9. No piece of work should be scored through even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
- 12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 13 **Do not write any comments on the scripts**. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 Tick correct working.
- 2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
- 3 Do not write marks as fractions.
- 4 Put each mark at the end of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs			
~	The tick. You are not expected to tick every line but of course you must check through the whole	Marks being allotted e.g. (•) normally be shown on scripts	would not
×	of a response. The cross and underline. Underline an error and place a cross at the end of the line.	$\frac{dy}{dx} = 4x - 7 \qquad \checkmark \bullet$ $4x - 7 = 0 \qquad \times$ $x = \frac{7}{4}$ $y = 3\frac{7}{8} \qquad \times \bullet$	margins 2
×	The tick-cross. Use this to show correct work where you are following through subsequent to an error.	$C = (1, -1) \qquad \times \qquad $	/ through
×	The double cross-tick. Use this to show correct work but which is inadequate to score any marks.	$m_{igt} = \frac{1}{\frac{4}{3}}$ $m_{igt} = -\frac{3}{4} \qquad \qquad \checkmark \bullet$ $y - 3 = -\frac{3}{4}(x - 2) \qquad \qquad \checkmark \bullet$	3
^	The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.	$x^{2} - 3x = 28 \qquad \checkmark \bullet$ $x = 7 \qquad \bigstar \qquad \qquad \bigstar$	1
	The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).	$sin(x) = 0.75 = invsin(0.75) = 48.6^{\circ}$	1
Ε	Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.	$log_{3}(x-\underline{2}) = 1 \qquad \qquad$	1
BOD	Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.		
······································			

All of these are to help us be more consistent and accurate.

It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

	Give 1 mark for each •	Illustrations for awarding each •
4	A recurrence relation is defined by $u_{n+1} = pu_n + q_n$ (a) If $u_1 = 15$ and $u_2 = 16$, find the values of p a (b) Find the limit of this recurrence relation as	$\begin{array}{ll} p \text{ where } -1 \begin{array}{ll} \text{and } q. & 2 \\ n \to \infty. & 2 \end{array}$
4	1.4.3, 1.4.4 CN CB 03/90 ans: (a) $p = \frac{1}{3}, q = 11$ 2 marks (b) $16\frac{1}{2}$ 2 marks •1 ss : e.g. form two equations in p and q •2 pd : process •3 ss : algebraic strategy for limit •4 pd : process limit	• ¹ $15 = 12p + q, 16 = 15p + q$ • ² $p = \frac{1}{3}, q = 11$ • ³ $e.g. \ L = \frac{1}{3}L + 11$ • ⁴ $L = 16\frac{1}{2}$
	Example 1 $12 = 16p + q \bullet 1 \times \\ 15 = 15p + q p = -3, q = 60 \bullet 2 \times \text{ f.t.} \\ \text{no limit exists since p} \\ \text{outside range } -1 \text{ to } 1 \bullet 3 \times \text{ f.t.} \\ \bullet 4 \text{not available} \\ 2 \text{ marks given}$	 Notes 1 for •1 either two equations explicitly stated or a trial and improvement approach checking in particular that u₁ does in fact equal 15 and u₂ does in fact equal 16 2 for (a) correct answers with no working may only earm •2 (one mark being lost through lack of com- munication) 3 for (a) trial and improvement leading to answers other than the correct ones earn no marks
	Example 2 $12 = 16p + q \cdot 1 \times 15 = 15p + q$ $p = -3, q = 60 \cdot 2 \times \text{ f.t.}$ $L = \frac{60}{1 - (\cdot 3)} \cdot 3 \times 10^{-3} \text{ J} $	 4 for any rounding eg p =0.3 or 0.33 instead of p = ¹/₃ in (a) or (b) the candidate loses •2 or •4 BUT candidates may not lose both •2 and •4 6 other acceptable strategies for the limit at •3 are L = ^q/_{1-p} "lost part" = "add on" i.e. ²/₃L = 11 7 if p has been incorrectly valued ≥ 1 or ≤ -1, •3 may still be awarded for a statement that the limit does not exist but •4 is not available. 8 candidates who choose values for pand q ex nihilo may still earn •3 and •4 9 •4 is lost if answers are left like ¹¹/₃ but uncancelled fractions e,g ⁶⁶/₄, are acceptable

Given that $f(x) = \sqrt{x} + \frac{2}{x^2}$, find $f'(4)$.	5
1.3.2, 1.3.4 CN C 03/19 ans : 3 5 marks	
 1 pd : express in standard form 2 pd : express in standard form 3 pd : differentiate fractional index 4 pd : differentiate negative index 5 pd : evaluation 	• $x^{\frac{1}{2}}$ stated or implied by •3 • $2x^{-2}$ stated or implied by •4 • $\frac{1}{2}x^{-\frac{1}{2}}$ • $4 -4x^{-3}$ • $\frac{3}{16}$
	 Notes 1 if incorrectly expressed in standard form, follow throughs must match the mark descriptors. 2 •5 can only be awarded on a follow through provided the evaluation involves a fractional index and a negative index.
	12
	3 for •5 accept $\frac{12}{64}$.
	 3 for •5 accept ¹²/₆₄. 4 no marks can be gained for finding f(4)
Example 1	 3 for •5 accept ¹²/₆₄. 4 no marks can be gained for finding <i>f</i>(4) Example 2
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \bullet 1 \checkmark$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2}$ •1 X
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \bullet 1 \checkmark$ $\bullet 2 \chi$ $f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \bullet 3 \chi \text{ f.t.}$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2}$ •1 × •2 × $f'(x) = -x^{-3} - 4x^{-3}$ •3 × no fractional index
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \bullet 1 \checkmark \\ \bullet 2 \checkmark \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \qquad \bullet 3 \checkmark \text{ f.t.} \\ \bullet 4 \checkmark \text{ f.t.} \\ f'(4) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \qquad \bullet 5 \rightthreetimes \text{ f.t.} \end{cases}$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2}$ •1 × •2 × $f'(x) = -x^{-3} - 4x^{-3}$ •3 × no fractional index •4 × $f'(4) = -\frac{1}{64} - \frac{1}{16} = -\frac{5}{64}$ •5 × f.t. eased
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \begin{array}{c} \bullet 1 \checkmark \\ \bullet 2 \end{matrix}$ $f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \qquad \begin{array}{c} \bullet 3 \checkmark \text{ f.t.} \\ \bullet 4 \checkmark \text{ f.t.} \\ f'(4) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \qquad \begin{array}{c} \bullet 5 \checkmark \text{ f.t.} \\ \bullet 4 \text{ marks given} \end{array}$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2} \bullet 1 \times \\ \bullet 2 \checkmark \\ f'(x) = -x^{-3} - 4x^{-3} \bullet 3 \And no fractional index \\ \bullet 4 \checkmark \\ f'(4) = -\frac{1}{64} - \frac{1}{16} = -\frac{5}{64} \bullet 5 \And f.t. eased \\ 2 marks given$
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \begin{array}{c} \bullet 1 \checkmark \\ \bullet 2 \end{matrix} \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \\ \bullet 3 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 4 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} + \frac{1}{8} $	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2} \qquad \bullet 1 \times \\ \bullet 2 \checkmark \\ f'(x) = -x^{-3} - 4x^{-3} \qquad \bullet 3 \And \text{ no fractional index} \\ \bullet 4 \checkmark \\ f'(4) = -\frac{1}{64} - \frac{1}{16} = -\frac{5}{64} \qquad \bullet 5 \And \text{ f.t. eased} \\ 2 \text{ marks given}$
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \begin{array}{c} \bullet 1 \checkmark \\ \bullet 2 \end{matrix} \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \\ \bullet 3 \end{matrix} \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \\ \bullet 4 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ \bullet 5 \end{matrix} \\ f'(x) = \frac{1}{4} - \frac{1}{8} - \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} \\ f'(x) = \frac{1}{4} - \frac{1}{8} -$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2} \qquad \begin{array}{c} \bullet 1 \\ \times \\ \bullet 2 \\ \checkmark \\ f'(x) = -x^{-3} - 4x^{-3} \\ \bullet 3 \\ \swarrow \\ \bullet 4 \\ \checkmark \\ f'(4) = -\frac{1}{64} - \frac{1}{16} = -\frac{5}{64} \\ \end{array}$ 2 marks given
Example 1 $f(x) = x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \qquad \begin{array}{c} \bullet 1 \checkmark \\ \bullet 2 \end{matrix} \\ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \qquad \begin{array}{c} \bullet 3 \checkmark \text{ f.t.} \\ \bullet 4 \checkmark \text{ f.t.} \\ f'(4) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \qquad \begin{array}{c} \bullet 5 \checkmark \text{ f.t.} \\ \end{array} \\ \\ 4 \text{ marks given} \end{array}$	3 for •5 accept $\frac{12}{64}$. 4 no marks can be gained for finding $f(4)$ Example 2 $f(x) = x^{-2} + 2x^{-2} \begin{array}{c} \bullet 1 \\ \times \\ \bullet 2 \\ \checkmark \\ f'(x) = -x^{-3} - 4x^{-3} \begin{array}{c} \bullet 3 \\ \swarrow \\ \bullet 4 \\ \checkmark \\ f'(4) = -\frac{1}{64} - \frac{1}{16} = -\frac{5}{64} \begin{array}{c} \bullet 5 \\ \swarrow \\ \end{array} f.t. eased$ 2 marks given

-Mathematics H 2003 Paper 1 Marking Scheme : FINAL

	Give	1 ma	rk for e	ach •			Illı	strations fo	r awarding each •	
3	A farmer sell brown eggs i	A farmer sells eggs in boxes of 6. The discrete random variable X represents the number of brown eggs in a box.								
	A has the foll	lowing	; probat	P(X = x)	$=\begin{cases} \frac{1}{3}k(7)\\ 0 \end{cases}$	n: -x) fo otl	for $x = 0$ nerwise	,1,2,3,4,5 aı	nd 6	
	where k is a ((a) Find the (b) Find the (b) Find the (b)	consta he valı he exp	nt. 1e of <i>k</i> . ected va	alue and	varianc	e of X, t	he numb	er of brown e	eggs in a box.	2 3
S 3	 4.2.11, 4.2.1 (a) ans : ³/₂₈ (b) ans : 2, •¹ ss : use Σ 	12 3 2P(X) =	CN :1	C 03/ 2 mark 3 mark	68 :s :s		• ¹ P(X) 74 . 64 . 54 .	4k, 3k, 2k, k	
	 ² pd : evalu ³ pd : calcu ⁴ pd : calcu ⁵ pd : calcu 	uate k ilate ex ilate E ilate Va	xpected (X ²) ariance	value			• ² ΣP • ³ $E(\Sigma)$ • ⁴ $E(\Sigma)$ • ⁵ $V(\Sigma)$	$(X) = 1 \implies k =$ $(X) = 2$ $(X) = 7$ $(X) = 3$	3/3/3/3 3 28	
	x	0	1	2	3	4	5	6		
	P(x) P(x)	7 <u>k</u> 3 7	$\frac{6k}{32}$	$\frac{5k}{3}$ 5	$\frac{4k}{3}$	$\frac{3k}{3}$	$\frac{2k}{3}$ 2	$\frac{k}{3}$ 1 $\times \frac{1}{38}$	$\Sigma = \frac{28k}{3} = 1 k = \frac{3}{28}$	
	xP(x)	0	6	10	12	12	10	$6 \times \frac{1}{28}$	$\Sigma = \frac{56}{28} = 2$	
	$x^2 P(x)$	0	6	20	36	48	50	$36 \times \frac{1}{28}$	$\sum = \frac{196}{28} = 7$ var = 7 - 2 ² = 3	
						20				

Give 1 mark for each •	Illustrations for awarding each •
Additional marks in Paper 1	
Question 1 +1	
 ¹ ic : rearrange in standard form ² ic : interpret gradient from linear equ. ³ ic : find perp. gradient ⁴ ic : state equation of line 	• $y = -4x + 1$ • $m = -4$ • $m_{perp} = \frac{1}{4}$ • $y - 3 = \frac{1}{4}(x - (-1))$
Question 2 +1	
 ¹ ic : start to complete square ² pd : finish completing the square 	• $(x+3)^2$ • $+2$
 •³ ic : sketch •⁴ ic : sketch •⁵ ic : sketch 	 ³ U – shaped parabola ⁴ minimum at (-3,2) ⁵ intercept on y – axis at (0,11)
Question 3 +1 •1 ic : interpret unit vectors •2 ss : know to use scalar product and get zero •3 pd : process	• ¹ $\begin{pmatrix} 3\\2\\0 \end{pmatrix}$ and $\begin{pmatrix} 2\\-3\\4 \end{pmatrix}$ • ² for perpendicularity " $u.v$ " = 0 • ³ $\begin{pmatrix} 3\\2\\0 \\4 \end{pmatrix} \begin{pmatrix} 2\\-3\\4 \end{pmatrix} = 6 - 6 + 0 = 0$
Question 4 +1 •1 ss: e.g. form two equations in p and q •2 pd: process •3 ic: state the condition for limit to exist •4 ss: algebraic strategy for limit •5 pd: process limit	• $15 = 12p + q, 16 = 15p + q$ • $p = \frac{1}{3}, q = 11$ • $since -1 < \frac{1}{3} < 1$, limit exists • $e.g. L = \frac{1}{3}L + 11$ • $L = 16\frac{1}{2}$
Question 5 +1	
 ¹ pd : express in standard form ² pd : express in standard form ³ pd : differentiate fractional index ⁴ pd : differentiate negative index ⁵ pd : evaluation ⁶ pd : evaluation 	• ¹ $x^{\frac{1}{2}}$ • ² $2x^{-2}$ • ³ $\frac{1}{2}x^{-\frac{1}{2}}$ • ⁴ $-4x^{-3}$ • ⁵ $\frac{1}{2} \times 4^{-\frac{1}{2}} = \frac{1}{4}$ or $-4 \times 4^{-3} = -\frac{1}{16}$ • ⁶ $\frac{3}{16}$

Give 1 mark for each •	Illustrations for awarding each •
Question 8 +1 •1 pd : express in standard form •2 pd : integrate •3 pd : integrate •4 is expediate the limits	• ¹ $(3x+1)^{\frac{1}{2}}$ • ² $\frac{1}{\frac{1}{2}}(3x+1)^{\frac{1}{2}}$ • ³ × $\frac{1}{3}$ • ⁴ $\left[\frac{2}{3}(3\times1+1)^{\frac{1}{2}}\right] - \left[\frac{2}{3}(3\times0+1)^{\frac{1}{2}}\right]$
• ⁵ pd : evaluate	$\bullet^5 \frac{2}{3}$
Question 10 +2	• ¹ hypot = $\sqrt{80}$
 ¹ pd : calculate hypotenuse ² pd : calculate sinp and cosp ³ ss : use double angle formula ⁴ pd : process sin(p) 	• ² $\sin(p) = \frac{4}{\sqrt{80}}$ and $\cos(p) = \frac{8}{\sqrt{80}}$ • ³ $\sin(2p) = 2\sin(p)\cos(p)$ • ⁴ $\sin(2p) = \frac{4}{5}$
 ba: process sin2p 5 ss: use double formula 6 pd: process cos2p 	• $\cos(2p) = 2\cos^{-}(p) - 1$ • $\cos(2p) = \frac{3}{5}$ • $\operatorname{gradient} = \tan(2p)$
 ⁴⁷ ic: relate gradient and tan ⁸ pd : process 	• ⁸ 4 3
Question 11 +1	-l 4 (12 5)
 ¹ ic : interpret centre ² pd : use Pythagoras ³ ic : interpret radius ⁴ ic : interpret centre ⁵ ic : state equ of circle ⁶ ic : interpret B and q ⁷ ss : strategy for p ⁸ pd : process 	• $A = (12, -5)$ • $OA = 13$ • $r_B = 8$ • $B = (24, 0)$ • $(x-24)^2 + y^2 = 64$ • $q = -24$ • r_7 substitute (12, -5) • $p = \frac{5}{144}$
Increase in marks for Paper 1 = 9 Increase in marks for Paper 2 = 11 Total increase in marks = 20. For 2004 the marks will allocated as fol Paper 1 60 Paper 2 70 Total 130	lows:
2'	

[END OF MARKING INSTRUCTIONS]

- Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made. This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
- 4. Correct working should be ticked (✓). This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (✓). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line. Work which is correct but inadequate to score any marks should be corrected with a double cross tick (X).
- 5. The total mark for each section of a question should be entered in red in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, not a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.

- 7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
- cont/

Mathematics Higher: Instructions to Markers

- 8. Do not penalise:
 - working subsequent to a correct answer
 - omission of units
 - bad form
 - legitimate variations in numerical answers
 - correct working in the "wrong" part of a question
- 9. No piece of work should be scored through even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
- 12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 13 **Do not write any comments on the scripts**. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 Tick correct working.
- 2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
- 3 Do not write marks as fractions.
- 4 Put each mark at the end of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs			
~	The tick. You are not expected to tick every line but of course you must check through the whole	Marks being allotted e.g. (•) w normally be shown on scripts	ould not
×	of a response. The cross and underline. Underline an error and place a cross at the end of the line.	$\frac{dy}{dx} = 4x - 7 \qquad \checkmark \bullet$ $4x - 7 = 0 \qquad \times$ $x = \frac{7}{4}$ $y = 3\frac{7}{8} \qquad \times \bullet$	margins 2
~	The tick-cross. Use this to show correct work where you are following through subsequent to an error.	$C = (1, -1) \qquad \times \qquad $	through
*	The double cross-tick. Use this to show correct work but which is inadequate to score any marks.	$m_{igt} = -\frac{3}{4} \qquad \qquad$	3
^	The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.	$x^2 - 3x = 28 \qquad \checkmark \bullet$ $x = 7 \qquad \bigstar$	1
	The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).	$sin(x) = 0.75 = invsin(0.75) = 48.6^{\circ}$	1
Ε	Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.	$log_{3}(x-\underline{2}) = 1 \qquad \qquad$	1
BOD	Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.		

All of these are to help us be more consistent and accurate.

It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

Mathematics H 2003 Paper 2 Marking Scheme : FINAL

	Give 1 mark for each •	Illustrations for awarding each •	
10	Solve the equation $3\cos(2x) + 10\cos(x) - 1 =$	0 for $0 \le x \le \pi$, correct to 2 decimal places. 5	
10	2.3.1CaBA 03/106ans: 1.23 radians5 marks•1ss : know to use double angle formula•2pd : arrange in standard form•3ss : know how to solve•4pd : solve•5pd : solve	• $3(2\cos^2(x)-1)$ • $6\cos^2(x)+10\cos(x)-4=0$ • $2(3\cos(x)-1)(\cos(x)+2)$ • $\cos(x) = \frac{1}{3}$ and $\cos(x) = -2$ • $x = 1.23$ and no solution	
	Example 1 $ \begin{array}{c} 6\cos^2(x) + 10\cos(x) - 2 = 0 \\ leading to \\ \cos(x) = 0.180 or \ \cos(x) = -1.84 \\ x = 1.39 radians no solution \end{array} $ $ \begin{array}{c} \cdot 1 \\ \cdot 2 \\ \cdot 3 \\ \cdot 4 \\ \cdot 5 $	Notes 1 alternative for •3 • $\cos(x) = \frac{-10 \pm \sqrt{10^2 - 4 \times 6 \times (-4)}}{2 \times 6}$ 2 •5 must include some indication that $\cos(x) = -2$ has no solutions. 3 in the event of other substitutions being used for $\cos(2x)$, no credit can be given until the equation reduces to a quadratic in $\cos(x)$. 4 •4 and •5 are only available as a consequence of solving a quadratic equation. 5 •4 and •5 may also be marked as follows • ⁴ $\cos(x) = \frac{1}{3}$ and $x = 1.23$ • ⁵ $\cos(x) = -2$ and no solution 6 For •5, accept $\frac{70.5\pi}{180}$ in lieu of 1.23 7 If an answer starts $3 \times 2 \cos^2(x) - 1 + 10 \cos(x) - 1 = 0$ $6 \cos^2(x) + 10 \cos(x) - 4 = 0$ then treat the first line as bad form. If an answer starts $3 \times 2 \cos^2(x) - 1 + 10 \cos(x) - 1 = 0$ $6 \cos^2(x) + 10 \cos(x) - 2 = 0$ then use Example 1.	

Mathematics H 2003 Paper 2 Marking Scheme : FINAL

	Give 1	l mark for each •	Illı	strations for awarding earling	ach•
1	After a leaflet	drop advertising a new ga	rden centre, a rand	om sample of households w	were
	surveyed. The	results are summarised in	the following table).	
			Read the leaflet	Did not read the leaflet	
		Visited the centre	80	20	
		Did not visit the centre	60	40	
	(a) Find (i) P(leaflet read)			່ ຈ
	(i	i) P(leaflet read and gar	den centre visited)		2
	(b) Comme	nt on whether the proport	ion who had visited	l the garden centre was the	e same 3
	whether	or not they had read the l	eaflet.		
S1	4.1.1, 4.1.3	CN CA 03/new			
	(a) ans: $\frac{140}{200}$,	80 2 marks	1		
	(b) ans : com	nment 3 marks	• ¹ <u>140</u> 200		
	• ¹ ic : interpre	et table	• <u>60</u> 200	0.55	
	•- ic : interpret	t table	• <u>140</u> =	= 0.57	
	•4 ic : interpret	t sample	• 60 =	0.33 & not the same	
	• ⁵ ic : commen	nt	had	some effect	
L		······································	- 17		
	•		- 1/		

Give 1 mark for each •	Illustrations for awarding each •
Additional marks in Paper 2	
Question 1 +1 •1 ss : know to evaluate f(2) •2 pd : evaluate f(2) and complete proof •3 ss : synthetic division or long division •4 ic : state quadratic factor •5 pd : factorise fully	• $f(2) = 6 \times 2^3 \dots$ • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(2) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2)$ is factor • $f(3) = 48 - 20 - 34 + 6 = 0$ so $(x - 2) + 20 + 20 + 20 + 20 + 20 + 20 + 20 +$
Question 2 +3	
 1 ic : interpret amplitude 2 ic : explanation 5 ic : interpret period 4 ic : explanation 5 ic : interpret vertical displacement 6 ic : explanation 	• ¹ $a = 4$ • ² half the vertical distance between max and min • ³ $b = 2$ • ⁴ graph completes 2 cycles between 0 and 2π • ⁵ $c = 1$ • ⁶ half way between $y = 5$ and $y = -3$
Question 3+1 \bullet^1 ss : area= \int upper function – lower function \bullet^2 ic : interpret diagram for limits \bullet^3 pd : simplify prior to integration \bullet^4 pd : integrate \bullet^5 ic : interpret the limits \bullet^6 pd : evaluate using limits	•1 $\int ((x^2 + 2x) - (x^3 - x^2 - 6x)) dx$ stated, or implied by • •2 $\int_{0}^{4} \dots \dots$ •3 $\int (8x + 2x^2 - x^3) dx$ •4 $\left[4x^2 + \frac{2}{3}x^3 - \frac{1}{4}x^4 \right]_{0}^{4}$ •5 $\left(4 \times 4^2 + \frac{2}{3} \times 4^3 - \frac{1}{4} \times 4^4 \right) - 0$ •6 $42\frac{2}{3}$
Question 4 +1	· · · · · · · · · · · · · · · · · · ·
 •1 ss : know to differentiate •2 pd : differentiate •3 pd : differentiate •4 pd : evaluate gradient •5 pd : evaluate y-coordinate •6 ic : state equation of line 	•1 $\frac{dy}{dx} =$ •2 $any 2 terms from 3x^2 + 4x - 3$ •3 $\frac{dy}{dx} = 3x^2 + 4x - 3$ •4 $m = \frac{dy}{dx} = 4$ gradient stated or implied by •6 •5 $y_{x=1} = 2$ •6 $y - 2 = 4(x - 1)$
Question 5 +1	
 1 ic : interpret f(-x) 2 ic : communication 3 ic : communication 4 ic : interpret 2f 5 ic : communication 	 ¹ refl. in <i>y</i> – axis ² annotate any two from (0, -3), (4, 2), (3, 0), (-1, 0) ³ annotate remaining two ⁴ a scaling & (3, 0), (-1, 0) ⁵ annotate (0, -6), (4, 4)

Give I mark for each •	Illustrations for awarding each •
Question 6 +1	
 ¹ pd : differentiate compound trig ² pd : differentiate compound trig ³ ic : interpret ⁴ pd : evaluate derivative ⁵ pd : evaluate derivative 	• ¹ $f'(x) = -2\sin(2x) +$ • ² 12 cos(4x) • ³ $f'(\frac{x}{6}) = -2\sin(\frac{2x}{6}) - 12\cos(\frac{4x}{6})$ • ⁴ $-2\sin(\frac{2x}{6}) = -\sqrt{3}$
	• ⁵ $-12\cos\left(\frac{4\pi}{6}\right) = 6$
Question 8 +2	
 ss: identify crucial aspect ic: start proof ic: complete proof ss: know to differentiate ss: know to set derivative to zero pd: express in standard form pd: differentiate pd: start to solve pd: solve ic: justify minimum 	• $length = \frac{108000}{\frac{1}{2}x^2}$ • $SA = 2 \times \frac{1}{2}x^2 + 2x \times length$ • $3 \dots SA = x^2 + \frac{432000}{x}$ • $\frac{4}{dx} = 0$ • $\frac{4}{dx} = 0$ • $\frac{4}{dx} = 0$ • $\frac{4}{2}x - 432000x^{-1}$ • $\frac{8}{2}x = \frac{432000}{x^2}$ • $\frac{9}{x} = 60$
Question 9 +1	• ¹⁰ e.g. nature table
•1 ss : use distributive law	• $a.(a+b) = a.a+a.b$
² pd : expand scalar product	• ² $a.b = 5 \times 4 \cos(\theta)$
³ pd : expand scalar product	• $a.a = 5^2$
•4 ic : substitution	• ⁴ $20\cos(\theta) = 11$
⁵ pd : complete calculations	$\bullet^5 \theta = 56.6^\circ$
Increase in marks for Paper 1 = 9 Increase in marks for Paper 2 = 11 Total increase in marks = 20. For 2004 the marks will allocated as fo Paper 1 60 Paper 2 70 Total 130	bllows:

[END OF MARKING INSTRUCTIONS]