X100/301

NATIONAL
QUALIFICATIONS 2003

WEDNESDAY, 21 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER
Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

Marks

1. Find the equation of the line which passes through the point $(-1,3)$ and is perpendicular to the line with equation $4 x+y-1=0$.
2. (a) Write $f(x)=x^{2}+6 x+11$ in the form $(x+a)^{2}+b$.
(b) Hence or otherwise sketch the graph of $y=f(x)$.
3. Vectors \boldsymbol{u} and \boldsymbol{v} are defined by $\boldsymbol{u}=3 \boldsymbol{i}+2 \boldsymbol{j}$ and $\boldsymbol{v}=2 \boldsymbol{i}-3 \boldsymbol{j}+4 \boldsymbol{k}$.

Determine whether or not \boldsymbol{u} and \boldsymbol{v} are perpendicular to each other.
4. A recurrence relation is defined by $u_{n+1}=p u_{n}+q$, where $-1<p<1$ and $u_{0}=12$.
(a) If $u_{1}=15$ and $u_{2}=16$, find the values of p and q.
(b) Find the limit of this recurrence relation as $n \rightarrow \infty$.
5. Given that $f(x)=\sqrt{x}+\frac{2}{x^{2}}$, find $f^{\prime}(4)$.
6. A and B are the points $(-1,-3,2)$ and $(2,-1,1)$ respectively.
B and C are the points of trisection of $A D$, that is $A B=B C=C D$.
Find the coordinates of D.

3
7. Show that the line with equation $y=2 x+1$ does not intersect the parabola with equation $y=x^{2}+3 x+4$.
8. Find $\int_{0}^{1} \frac{d x}{(3 x+1)^{\frac{1}{2}}}$.
9. Functions $f(x)=\frac{1}{x-4}$ and $g(x)=2 x+3$ are defined on suitable domains.
(a) Find an expression for $h(x)$ where $h(x)=f(g(x))$.
(b) Write down any restriction on the domain of h.
10. A is the point $(8,4)$. The line OA is inclined at an angle p radians to the x-axis.
(a) Find the exact values of:
(i) $\sin (2 p)$;
(ii) $\cos (2 p)$.

The line OB is inclined at an angle $2 p$ radians to the x-axis.
(b) Write down the exact value of the gradient of OB.

11. - O, A and B are the centres of the three circles shown in the diagram below.

- The two outer circles are congruent and each touches the smallest circle.
- Circle centre A has equation $(x-12)^{2}+(y+5)^{2}=25$.
- The three centres lie on a parabola whose axis of symmetry is shown by the broken line through A.

(a) (i) State the coordinates of A and find the length of the line OA.
(ii) Hence find the equation of the circle with centre B.
(b) The equation of the parabola can be written in the form $y=p x(x+q)$. Find the values of p and q.

12. Simplify $3 \log _{e}(2 e)-2 \log _{e}(3 e)$ expressing your answer in the form $\mathrm{A}+\log _{e} \mathrm{~B}-\log _{e} \mathrm{C}$ where A, B and C are whole numbers.

X100/303

NATIONAL
QUALIFICATIONS 2003

WEDNESDAY, 21 MAY 10.30 AM - 12.00 NOON

MATHEMATICS HIGHER
 Units 1, 2 and 3
 Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

1. $f(x)=6 x^{3}-5 x^{2}-17 x+6$.
(a) Show that $(x-2)$ is a factor of $f(x)$.
(b) Express $f(x)$ in its fully factorised form.

4
2. The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y=a \sin (b x)+c$.
Determine the values of a, b and c.

3. The incomplete graphs of $f(x)=x^{2}+2 x$ and $g(x)=x^{3}-x^{2}-6 x$ are shown in the diagram. The graphs intersect at $A(4,24)$ and the origin.
Find the shaded area enclosed between the curves.

4. (a) Find the equation of the tangent to the curve with equation $y=x^{3}+2 x^{2}-3 x+2$ at the point where $x=1$.
(b) Show that this line is also a tangent to the circle with equation $x^{2}+y^{2}-12 x-10 y+44=0$ and state the coordinates of the point of contact.
5. The diagram shows the graph of a function f.
f has a minimum turning point at $(0,-3)$ and a point of inflexion at $(-4,2)$.
(a) Sketch the graph of $y=f(-x)$.
(b) On the same diagram, sketch the graph of $y=2 f(-x)$.

6. If $f(x)=\cos (2 x)-3 \sin (4 x)$, find the exact value of $f^{\prime}\left(\frac{\pi}{6}\right)$.
7. Part of the graph of $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ is shown in the diagram.
(a) Express $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ in the form $k \sin \left(x^{\circ}+a^{\circ}\right)$ where $k>0$ and $0 \leq a<360$.
(b) Find the coordinates of the minimum turning point P .

3
8. An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length $x \mathrm{~cm}$. The tank has a length of $l \mathrm{~cm}$.

(a) Show that the surface area to be lined, $A \mathrm{~cm}^{2}$, is given by $A(x)=x^{2}+\frac{432000}{x}$.
(b) Find the value of x which minimises this surface area.
9. The diagram shows vectors \boldsymbol{a} and \boldsymbol{b}.

If $|\boldsymbol{a}|=5,|\boldsymbol{b}|=4$ and $\boldsymbol{a} .(\boldsymbol{a}+\boldsymbol{b})=36$, find the size of the acute angle θ between \boldsymbol{a} and \boldsymbol{b}.

10. Solve the equation $3 \cos (2 x)+10 \cos (x)-1=0$ for $0 \leq x \leq \pi$, correct to 2 decimal places.
11. (a) (i) Sketch the graph of $y=a^{x}+1, a>2$.
(ii) On the same diagram, sketch the graph of $y=a^{x+1}, a>2$.
(b) Prove that the graphs intersect at a point where the x-coordinate is $\log _{a}\left(\frac{1}{a-1}\right)$.

2003 Mathematics

Higher

Finalised Marking Instructions

NB In and after the 2004 diet of examinations, the total number of marks for the Higher Mathematics examination will increase from 110 to 130. There will be NO other changes to the format of the examination.

To provide guidance to Centres on how the 20 additional marks will be allocated, additional pages have been added to the following 2003 Marking Instructions to show how an additional 20 marks could have been allocated to the 2003 examination.

Notes to the marking scheme for Higher Mathematics 2003

1. Illustrations where additional marks could be added to bring the overall total up to 130 are shown as follows:

Paper 1 extra marks are shown on pages 21-22 of the paper $1 \mathrm{~m} / \mathrm{s}$.
Paper 2 extra marks are shown on pages 21-22 of the paper $2 \mathrm{~m} / \mathrm{s}$.
2. Legend for the coding at the beginning of each marking scheme:

1	2.1.1,2.1.3	$\mathbf{C N}$	\mathbf{C}	$\mathbf{0 3 / 1 0 1}$
question	syllabus code(s)	calculator neutral	level	catalogue no.
		NC non-calculator		
		C calculator required		

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.
This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
4. Correct working should be ticked ($\mathcal{\sim}$).This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (\boldsymbol{X}). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.
Work which is correct but inadequate to score any marks should be corrected with a double cross tick (\mathbb{X}).
5. - The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.
Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.
7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
cont/
8. Do not penalise:

- working subsequent to a correct answer
- omission of units
- bad form
- legitimate variations in numerical answers
- correct working in the "wrong" part of a question

9. No piece of work should be scored through - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme - answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

13 Do not write any comments on the scripts. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:
1 Tick correct working.
2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs

\checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response.
\qquad \times The cross and underline. Underline an error and place a cross at the end of the line.
\mathcal{X} The tick-cross. Use this to show correct work where you are following through subsequent to an error.

* The double cross-tick. Use this to show correct work but which is inadequate to score any marks.
\wedge The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.

The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).

E
Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.

BOD Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.

Marks being allotted e.g. (•) would not normally be shown on scripts

All of these are to help us be more consistent and accurate.
It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

	Give 1 mark for each •	Illustrations for awarding each -
2 (a) Write $f(x)=x^{2}+6 x+11$ in the form $(x+a)^{2}+b$. (b) Hence or otherwise sketch the graph of $y=f(x)$.		
2		
	 (a) $(x+3)^{2}+2$ -1 $\cdot 2$ (b) For a U parabola -3 through $(0,11)$ and $(3,2)$ Notes 12 marks may be awarded for stating $a=3$ and $b=2$ 2 accept the information about $(-3,2)$ and $(0,11)$ in the body of the working provided the sketch shows a parabola in a consistent position. (a) $(x-3)^{2}+2$ $\cdot 1 X$ (b) For a U parabola through $(0,11)$ and $(3,2)$ 3 mark given 3 marks given (a) $\begin{aligned} (x+a)^{2}+b & =x^{2}+2 a x+a^{2}+b \\ 2 a & =6 \ldots \ldots a=3 \\ a^{2}+b & =11 \ldots \ldots b=2 \end{aligned}$ (a) $(x+3)^{2}+20$ (b) For a U parabola through $(0,11)$ and the minimum in the right position but marked as $(-3,20)$ -1 \quad. X - $2 X$ -3 X 2 marks given	

	Give 1 mark for each •	Illustrations for awarding each -
	A recurrence relation is defined by $u_{n+1}=p u_{n}+q$. where $-1<p<1$ and $u_{0}=12$. (a) If $u_{1}=15$ and $u_{2}=16$, find the values of p and q. (b) Find the limit of this recurrence relation as $n \rightarrow \infty$.	
4	1.4.3, $1.4 .4 \quad$ CN ans: (a) $p=\frac{1}{3}, q=11$ (b) $16 \frac{1}{2}$.1 ss : e.g. form two equations in p and q .2 pd : process .3 ss : algebraic strategy for limit .4 pd : process limit	-1 $15=12 p+q, 16=15 p+q$ - ${ }^{2} p=\frac{1}{3}, q=11$ - e.g. $L=\frac{1}{3} L+11$ -4 $L=16 \frac{1}{2}$
	Example 1 $\begin{array}{ll} 12=16 p+q & \bullet 1 \times \\ 15=15 p+q & \\ p=-3, q=60 & \bullet 2 \times \text { f.t. } \\ \text { no limit exists since } p & \\ \text { outside range }-1 \text { to } 1 & \bullet 3 \times \text { f.t. } \\ & \bullet 4 \times \text { not available } \end{array}$ 2 marks given Example 2 $\begin{array}{ll} 12=16 p+q & \bullet 1 \times \\ 15=15 p+q & \\ p=-3, q=60 & \bullet 2 \times \text { f.t. } \\ \mathrm{L}=\frac{60}{1-(-3)} & \bullet 3 \times \\ \mathrm{L}=15 & \bullet 4 \times \\ & 1 \text { mark given } \end{array}$	Notes 1 for ${ }^{-1}$ either two equations explicitly stated or a trial and improvement approach checking in particular that u_{1} does in fact equal 15 and u_{2} does in fact equal 16 2 for (a) correct answers with no working may only earn $\bullet 2$ (one mark being lost through lack of communication) 3 for (a) trial and improvement leading to answers other than the correct ones earn no marks 4 for any rounding eg $p=0.3$ or 0.33 instead of $p=\frac{1}{3}$ in (a) or (b) the candidate loses $\bullet 2$ or $\bullet 4$ BUT candidates may not lose both $\bullet 2$ and $\bullet 4$ 6 other acceptable strategies for the limit at $\bullet 3$ are - $L=\frac{q}{1-p}$ - "lost part" $=$ "add on" i.e. $\frac{2}{3} L=11$ 7 if p has been incorrectly valued ≥ 1 or $\leq-1, \bullet 3$ may still be awarded for a statement that the limit does not exist but $\bullet 4$ is not available. 8 candidates who choose values for pand q ex nihilo may still earn $\bullet 3$ and $\bullet 4$ $9 \bullet 4$ is lost if answers are left like $\frac{11}{\frac{2}{3}}$ but uncancelled fractions e,g $\frac{66}{4}$, are acceptable

	Give 1 mark for each -	Illustrations for awarding each -
	A and B are the points $(-1,-3,2)$ and $(2,-1,1)$ respectively. B and C are the points of trisection of $A D$, that is $A B=B C=C D$. Find the coordinates of D.	
6	$\begin{array}{lrl} \begin{array}{l} \text { 3.1.6, 3.1.2 } \end{array} & \text { CN } & \text { C } \begin{array}{l} \text { 03/48 } \\ \text { ans }:(8,3,-1) \end{array} \\ & 3 \text { marks } \end{array}$ -1 ss : e.g. use a vector approach - 2 ic : interpret trisection ${ }^{-3} \mathrm{pd}$: process coordinates	$\cdot{ }^{1} \overrightarrow{A B}=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right) \quad$ may be stated or implied by $\bullet 2$ $\bullet^{2} \overrightarrow{A D}=3 \overrightarrow{A B}=\left(\begin{array}{c}9 \\ 6 \\ -3\end{array}\right) \begin{aligned} & \text { may be stated or implied by } \cdot 3 \\ & \text { but not as well as the above! }\end{aligned}$ - ${ }^{3} \quad D=(8,3,-1)$
	Alternative 1 $\begin{aligned} \bullet & \overrightarrow{A B} \end{aligned}=\left(\begin{array}{c} 3 \\ 2 \\ -1 \end{array}\right), ~ \begin{aligned} \bullet & C=(5,1,0) \\ \bullet & D=(8,3,-1) \end{aligned}$ Alternative 2 $\begin{array}{ll} \bullet & \overrightarrow{A B}=\left(\begin{array}{c} 3 \\ 2 \\ -1 \end{array}\right) \\ \bullet & \overrightarrow{B D}=2 \overrightarrow{A B}=\left(\begin{array}{c} 6 \\ 4 \\ -2 \end{array}\right) \\ \bullet & D=(8,3,-1) \end{array}$ Alternative 3 one of many forms of the section formula -1 $b=\frac{2}{3} a+\frac{1}{3} d$ \bullet^{2} substitution -3 $d=\left(\begin{array}{c}8 \\ 3 \\ -1\end{array}\right)$	Notes 1 Treat as bad form expressions such as $D=\left(\begin{array}{c} 8 \\ 3 \\ -1 \end{array}\right) \text { or } \overrightarrow{B D}=(6,4,-2)$ $2 \mathrm{D}=(8,3,-1)$ with no working may be awarded 2 marks, 1 mark being lost for poor communication 3 A wrong answer with no working earns no marks 4 If A is taken as $(2,-1,1)$ and B as $(-1,-3,2)$ then work leading to $\mathrm{D}(-7,-7,4)$ may be awarded 2 marks. Example 1 $\begin{array}{ll} C=(5,1,0) & \bullet 1 \checkmark \bullet 2 \\ D=(8,3,-1) & \bullet 3 \vee \end{array}$ 3 marks given

	Give 1 mark for each -	Illustrations for awarding each -
8	Find $\int_{0}^{1} \frac{d x}{(3 x+1)^{\frac{1}{2}}}$.	4
8	3.2.3 CN CA 03/55 ans : $\frac{2}{3}$ 4 marks -1 pd : express in standard form - 2 pd : integrate - ${ }^{3} \mathrm{pd}$: integrate ${ }^{4}$ pd : evaluate using limits	- $\quad(3 x+1)^{-\frac{1}{2}}$ - $2 \quad \frac{1}{\frac{1}{2}}(3 x+1)^{\frac{1}{2}}$ ${ }^{3} \quad \ldots \times \frac{1}{3}$ - ${ }^{4} \quad \frac{2}{3}$
	Example 1 $\begin{aligned} & {\left[\begin{array}{ll} {\left[\frac{1}{(3 x+1)^{\frac{3}{2}}}\right.} \\ \frac{3}{2} \times 3 \end{array}\right]_{0}^{1}} \\ & \bullet \begin{array}{l} \bullet 2 X \\ \bullet 3 \end{array} \quad \begin{array}{l} \text { f.t. } \\ =\frac{9}{2}\left(\frac{1}{8}-1\right) \end{array} \\ & =-\frac{63}{16} \end{aligned}$ Example 2 $\begin{array}{ll} {\left[\frac{1}{\frac{3}{2}(3 x+1)^{-\frac{1}{2}}}\right]_{0}^{1}} & \bullet 1 X \\ =\ldots & \bullet 3 X \\ =\frac{\bullet}{} & \begin{array}{l} \text { f.t } \\ =\frac{2}{3} \end{array} \\ & 1 \text { mark given } \end{array}$ Example 3 $\begin{array}{ll} {\left[-\frac{3}{2}(3 x+1)^{\frac{3}{2}}\right]_{0}^{1}} & \bullet 1 X \\ =\ldots & \bullet 3 X \\ =\frac{21}{16} & \bullet 4 X \text { f.t. } \\ & \\ & 1 \text { mark given } \\ \hline \end{array}$	Notes 1 Treat $\frac{2}{3}+c$ as bad form $2 \frac{1}{1.5}$ does not gain $\bullet 4$ $3 \cdot 4$ is only available after an attempt has been made to integrate $4 \bullet 4$ is only available if the evaluation involves a fractional power. Example 4 $\begin{array}{ll} {\left[2(3 x+1)^{\frac{1}{2}}\right]_{0}^{1}} & \bullet 1 \checkmark \\ =2 \times 4^{\frac{1}{2}}-2 \times 1^{\frac{1}{1}} & \bullet 3 X \\ =2 & \bullet 4 \vee \text { f.t. } \\ & 3 \text { marks given } \end{array}$ Example 5 $\begin{array}{ll} {\left[2(3 x+1)^{\frac{1}{2}}\right]_{0}^{1}} & \bullet 1 \checkmark \\ =\left[(6 x+2)^{\frac{1}{2}}\right]_{0}^{1} & \bullet 3 X \\ =\ldots & \bullet 4 X \\ =\sqrt{2} & 2 \text { marks given } \end{array}$

	Give 1 mark for each -	Illustrations for awarding each -
Functions $f(x)=\frac{1}{x-4}$ and $g(x)=2 x+3$ are defined on suitable domains. (a) Find an expression for $h(x)$ where $h(x)=f(g(x))$. (b) Write down any restriction on the domain of h.		
9	1.2.1, 1.2.6 CN CA 03/5 (a) ans : $\frac{1}{2 x-1} \quad 2$ marks (b) ans : $x \neq \frac{1}{2} \quad 1$ mark -1 ic : start composite function -2 ic : complete composite function -3 ic : interpret denominator	$\begin{aligned} & \bullet^{1} f(2 x+3) \quad \text { stated or implied by } \bullet^{2} \\ & \bullet^{2} \frac{1}{2 x+3-4} \\ & \bullet^{3} \quad x \neq \frac{1}{2} \end{aligned}$
	Example 1 $\begin{array}{ll} \ldots\left(\frac{1}{x-4}\right) & \bullet 1 X \\ \frac{2}{x-4}+3 & \bullet 2 \cup \text { f.t. } \\ x \neq 4 & \bullet 3 \cup \text { f.t. } \\ & 2 \text { marks given } \end{array}$	Notes 1 Use example 1 if candidate finds $g(f(x))$ [which they may call $\mathrm{f}(\mathrm{g}(\mathrm{x}))$!! $2 \cdot 3$ is only available for working containing an algebraic fraction e.g. $\frac{a}{x+c}$ or harder. 3 for $\bullet 3$ accept any statement involving a $\frac{1}{2}$ e.g. a $\quad x \neq \frac{1}{2}$ (the actual restriction) b $\quad x=\frac{1}{2}$ (the value to be restricted from the domain) c $\quad x>\frac{1}{2}$ (part of the restricted domain) d $\quad x<\frac{1}{2}$ (also part of the restricted domain) In each case the candidate has identified the value of x which makes the denominator zero (which was the point of (b)). 4 for (b) do not accept unsimplified forms such as $2 x-1=0$. 4 for $\bullet 3$, treat $h \neq \frac{1}{2}$ as bad form.

	Give 1 mark for each •	Illustrations for awarding each *
	A is the point $(8,4)$. The line OA is inclined at an angle p radians to the x-axis. (a) Find the exact values of (i) $\quad \sin (2 p)$ (ii) $\quad \cos (2 p)$. The line OB is inclined at an angle $2 p$ radians to the x-axis. (b) Write down the exact value of the gradient of OB.	
10		- ${ }^{1}$ hypot $=\sqrt{80}$ $\bullet^{2} \quad \sin (p)=\frac{4}{\sqrt{80}}$ and $\cos (p)=\frac{8}{\sqrt{80}}$ - ${ }^{3} \sin (2 p)=2 \sin (p) \cos (p)$ -4 $\sin (2 p)=\frac{4}{5}$ - $5 \quad \cos (2 p)=\frac{3}{5}$
	Example 1 $\begin{array}{rlrl} \tan (p) & =\frac{1}{2} & & \bullet 1 \times \\ p & =30^{\circ} & & \bullet 2 X \\ \sin (p) & =\frac{1}{2}, \cos (p)=\frac{\sqrt{3}}{2} & \bullet 3 \times \text { f.t. } \\ \sin (2 p) & =2 \sin (p) \cos (p) & & \\ & =2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} & & \bullet 4 \times \text { f.t. } \\ & =\frac{\sqrt{3}}{2} & & \\ \cos (2 p) & =2 \cos ^{2}(p)-1 & & \\ & =2\left(\frac{\sqrt{3}}{2}\right)^{2}-1 & & \bullet 5 \times \text { f.t. } \\ & =\frac{1}{2} & & \bullet \text { f.t. } \\ \tan (2 p) & =\frac{\sqrt{3}}{\frac{1}{2}}=\sqrt{3} & & \bullet 6 \times 1 \text { marks given } \end{array}$ Example 2 $\begin{aligned} \tan (p) & =\frac{1}{2} & & \bullet 1 X \\ p & =30^{\circ} & & \bullet 2 X \\ \sin (2 p) & =\sin 60 & & \bullet 3 X \\ & =\frac{\sqrt{3}}{2} & & \bullet 4 X \\ \cos (2 p) & =\cos 60 & & \bullet 5 X \\ & =\frac{1}{2} & & \bullet 6 X \\ \tan (2 p) & =\tan 60=\sqrt{3} & & 0 \text { marks given } \end{aligned}$	Notes 1 accept uncancelled fractions for $\bullet 4, \bullet 5$ and $\bullet 6$. e.g. $\frac{64}{80}, \frac{48}{80}$ and $\frac{64}{48}$ are common 2 marks 4-6 are not available to candidates who base their answers on the assumption that $p=30^{\circ}, 45$ etc so that $\sin (2 p)=\sin (60)$ etc. See examples $1 \& 2$. Example 3

11 - O, A and B are the centres of the three circles shown in the diagram below.

- The two outer circles are congruent and each touches the smallest circle.
- Circle centre A has equation $(x-12)^{2}+(y+5)^{2}=25$.
- The three centres lie on a parabola whose axis of symmetry is shown by the broken line through A.

(a) (i) State the coordinates of A and find the length of the line OA.
(ii) Hence find the equation of the circle with centre B.
(b) The equation of the parabola can be written in the form $y=p x(x+q)$.

Find the values of p and q.

11	2.4.1, 2.1.10 CN CBA (a) ans: $\mathrm{A}(12,-5), \mathrm{OA}=13$ $(x-24)^{2}+y^{2}=64$ (b) ans: $p=\frac{5}{144}, q=-24$ -1 ic : interpret centre - ${ }^{2}$ pd: use Pythagoras ${ }^{-3}$ ic : interpret radius - 4 ic : interpret centre .5 ic : state equ of circle ${ }^{-6}$ pd : process ${ }^{\circ} 7$ pd: process	03/40 5 marks 2 marks	- $1 \quad A=(12,-5)$ -2 $O A=13 \quad$ accept $\sqrt{169}$ - $r_{B}=8$ stated or implied by ${ }^{5}$ -4 $B=(24,0)$ stated or implied by ${ }^{\circ} 5$ - $5(x-24)^{2}+y^{2}=64$ - $\quad p=\frac{5}{144}$ ${ }^{7} q=-24$
			Notes 1 Take care with the implications at $\bullet 3$ and $\bullet 4$. Only the correct values for r and B can be implied by $\bullet 5$. Incorrect values of r and/or B must be stated before the equation of the circle is given in order that $\bullet 5$ can be awarded as a follow-through mark.

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each • \& Illustrations for awarding each •

\hline 12 \& Simplify $3 \log _{e}(2 e)-2 \log _{e}(3 e)$, expressing you and C are whole numbers. \& swer in the form $\mathrm{A}+\log _{e}(\mathrm{~B})-\log _{e}(\mathrm{C})$ where A, B

\hline 12 \& 3.3.6, 3.3.2 CN \quad BA 03/43
ans: $1+\ln (8)-\ln (9)$

$\bullet^{1} \mathrm{pd}:$ use \log laws
$\bullet^{2} \mathrm{pd}:$ use \log laws
$\bullet^{3} \mathrm{pd}:$ process

$\bullet^{4} \mathrm{pd}:$ use \log laws \& $$
\begin{array}{ll}
\bullet^{1} & \ln (2 e)^{3}-\ln (3 e)^{2} \\
\bullet^{2} & \ln \left(\frac{(2 e)^{3}}{(3 e)^{2}}\right) \\
\bullet^{3} & \ln \left(\frac{8 e}{9}\right) \\
\bullet^{4} & 1+\ln (8)-\ln (9)
\end{array}
$$

\hline \& | Alternative 1 |
| :--- |
| - ${ }^{1} 3[\ln (2)+\ln (e)]$ |
| - ${ }^{2} \quad-2[\ln (3)+\ln (e)]$ |
| - $3 \ln (2)+3-2 \ln (3)-2$ |
| - $1+\ln (8)-\ln (9)$ |
| Example 1 |
| Example 2 |
| Example 3 | \& | Notes |
| :--- |
| $1 \ln 2 e^{3}-\ln 3 e^{2}$ will not gain $\bullet 1$ unless you see an ' 8 ' and a ' 9 ' appearing in subsequent work, in which case you can treat it as bad form. |
| Example 4 |
| Example 5 |
| Example 6 |
| Example 7 $\begin{array}{\|lll\|} \hline 3 \ln (2)+\ln (e)-2 \ln (3)+\ln (e) & \bullet 1 & \bullet 2 \\ \ln (8)+1-\ln (9)+1 & \bullet 3 & X \\ 2+\ln (8)-\ln (9) & \bullet 4 & X \\ & 2 \text { marks given } \\ & & \\ & & \\ & & \\ & \\ & \end{array}$ |

\hline
\end{tabular}

Give 1 mark for each -	Illustrations for awarding each -
Additional marks in Paper 1 Question $1 \quad+1$ ${ }^{-1}$ ic : rearrange in standard form - 2 ic : interpret gradient from linear equ. - 3 ic : find perp. gradient $\bullet 4$ ic : state equation of line	-1 $y=-4 x+1$ $\bullet^{2} \quad m=-4$ ${ }^{3} m_{\text {perp }}=\frac{1}{4}$ -4 $y-3=\frac{1}{4}(x-(-1))$
Question $2+1$ -1 ic : start to complete square -2 pd : finish completing the square -3 ic : sketch ${ }^{-4}$ ic : sketch ${ }^{-5}$ ic : sketch	- $\quad(x+3)^{2}$ $\bullet^{2}+2$ -3 U-shaped parabola - minimum at $(-3,2)$ -5 intercept on y-axis at $(0,11)$
Question $3 \quad+1$ -1 ic: interpret unit vectors -2 ss: know to use scalar product and get zero ${ }^{-3} \mathrm{pd}$: process	-1 $\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -3 \\ 4\end{array}\right)$ - ${ }^{2}$ for perpendicularity " $u \cdot v$ " $=0$ $\bullet^{3}\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)\left(\begin{array}{c}2 \\ -3 \\ 4\end{array}\right)=6-6+0=0$
Question $4 \quad+1$ -1 ss: e.g. form two equations in p and q ${ }^{-2} \mathrm{pd}$: process $\cdot{ }^{3}$ ic: state the condition for limit to exist - 4 ss : algebraic strategy for limit ${ }^{-5} \mathrm{pd}$: process limit	-1 $15=12 p+q, 16=15 p+q$ -2 $p=\frac{1}{3}, q=11$ ${ }^{3}$ since $-1<\frac{1}{3}<1$, limit exists - e.g. $L=\frac{1}{3} L+11$ - $5=16 \frac{1}{2}$
Question $5 \quad+1$ -1 pd : express in standard form ${ }^{-2} \mathrm{pd}$: express in standard form ${ }^{-3} \mathrm{pd}$: differentiate fractional index ${ }^{-4} \mathrm{pd}$: differentiate negative index ${ }^{.5} \mathrm{pd}$: evaluation ${ }^{\bullet 6} \mathrm{pd}$: evaluation	- $x^{\frac{1}{2}}$ ${ }^{2} \quad 2 x^{-2}$ - $\frac{1}{2} x^{-\frac{1}{2}}$ - $-4 x^{-3}$ - ${ }^{5} \frac{1}{2} \times 4^{\frac{-1}{2}}=\frac{1}{4}$ or $-4 \times 4^{-3}=-\frac{1}{16}$ ${ }^{6} \frac{3}{16}$

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.
This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
4. Correct working should be ticked ($\mathcal{\sim}$).This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (\boldsymbol{X}). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.
Work which is correct but inadequate to score any marks should be corrected with a double cross tick (\mathbb{X}).
5. - The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.
Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.
7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will be indicated in the marking instructions.
cont/
8. Do not penalise:

- working subsequent to a correct answer
- omission of units
- bad form
- legitimate variations in numerical answers
- correct working in the "wrong" part of a question

9. No piece of work should be scored through - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme - answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

13 Do not write any comments on the scripts. A summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:
1 Tick correct working.
2 Put a mark in the right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs

\checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response.
\qquad \times The cross and underline. Underline an error and place a cross at the end of the line.
\mathcal{X} The tick-cross. Use this to show correct work where you are following through subsequent to an error.

* The double cross-tick. Use this to show correct work but which is inadequate to score any marks.
\wedge The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.

The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).

E
Eased. Where working is found correct whilst following through subsequent to an error, the working has been eased sufficiently for a mark not to be awarded.

BOD Benefit of Doubt. Use this where you have to decide between two consecutive marks and award the higher.

Marks being allotted e.g. (•) would not normally be shown on scripts

All of these are to help us be more consistent and accurate.
It goes without saying that however accurate you are in marking, it is to no avail unless you have added the marks up correctly. Please double check totals!!

	Give 1 mark for each -	Illustrations for awarding each -
$1 f(x)=6 x^{3}-5 x^{2}-17 x+6$. (a) Show that $(x-2)$ is a factor of $f(x)$. (b) Express $f(x)$ in its fully factorised form.		
1	2.1.1, 2.1.3 CN C 03/101 ans: proof and $(x-2)(2 x+3)(3 x-1) \quad 4 \text { marks }$ -1 ss : synthetic division, long division or evaluation - 2 ic : complete proof ${ }^{-3}$ ic : state quadratic factor - 4 pd : factorise fully	$\begin{aligned} & \bullet 2 \begin{array}{\|cccc\|} \hline 6 & -5 & -17 & 6 \\ 12 \end{array} \\ & \qquad \begin{array}{r} 6 \\ \bullet \begin{array}{rrrr} 6 & -5 & -17 & 6 \\ 12 & 14 & -6 \end{array} \\ \hline 6 \end{array} 7 \begin{array}{lll} -3 & 0 \end{array} \end{aligned}$ - $6 x^{2}+7 x-3$ - ${ }^{4}(x-2)(2 x+3)(3 x-1)$ stated explicitly
	Alternative 1 - ${ }^{1} f(2)=6 \times 2^{3} \ldots \ldots$ -2 $f(2)=48-20-34+6=0$ ${ }^{3} 6 x^{2}+7 x-3$ - ${ }^{4}(x-2)(2 x+3)(3 x-1)$ Alternative 2	Notes 1 See page 16 for advice on solutions obtained via a graphics calculator

Give 1 mark for each •

Illustrations for awarding each •
3 The incomplete graphs of $f(x)=x^{2}+2 x$ and $g(x)=x^{3}-x^{2}-6 x$ are shown in the diagram. The graphs intersect at $A(4,24)$ and the origin.
Find the shaded area enclosed between the curves.

3	2.1.2, 2.2.7 CN CB 03/109 ans: $42 \frac{2}{3} \quad 5$ marks .1 ss : area= \int upper function - lower function .2 ic : interpret limits .${ }^{4}$ pd : simplify prior to integration $\bullet 4$ pd : integrate $\bullet 5$ pd : evaluate using limits	$\bullet^{1} \int\left(\left(x^{2}+2 x\right)-\left(x^{3}-x^{2}-6 x\right)\right) d x$ stated, or implied by \bullet^{3} $\bullet^{2} \int_{0}^{4} \ldots .$. - $\int\left(8 x+2 x^{2}-x^{3}\right) d x$ $\cdot{ }^{4}\left[4 x^{2}+\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{4}$ - $542 \frac{2}{3}$
	Alternative 1 - $1 \int\left(x^{2}+2 x\right)-\left(x^{3}-x^{2}-6 x\right) d x$ $\bullet^{2} \int_{0}^{4} \ldots \ldots$ - $\quad\left[\frac{1}{3} x^{3}+x^{2}\right]_{0}^{4}$ - $4\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-3 x^{2}\right]_{0}^{4}$ - $5 \quad 42 \frac{2}{3}$ Alternative 2 -1 $\int_{0}^{3}\left(x^{3}-x^{2}-6 x\right) d x$ $\bullet A_{2}+A_{3}=\int_{0}^{4}\left(x^{2}+2 x\right) d x$ - ${ }^{3} A_{3}=\int_{3}^{4}\left(x^{3}-x^{2}-6 x\right) d x$ - $45 \frac{3}{4}$ or $37 \frac{1}{3}$ or $10 \frac{5}{12}$ - $515 \frac{3}{4}+37 \frac{1}{3}-10 \frac{5}{12}=42 \frac{2}{3}$	Notes $1 \cdot 1$ is lost for subtracting the wrong way round. -5 will also be lost for statements such as $-42 \frac{2}{3}=42 \frac{2}{3}$, $-42 \frac{2}{3}$ so ignore the - ve, $-42 \frac{2}{3}=42 \frac{2}{3}$ sq units - 5 may still be gained for statements such as $\ldots-42 \frac{2}{3}$ and so the area $=42 \frac{2}{3}$. 2 For candidates who split up the area into three integrals, see model in Alternative 2 3 Do not penalise decimal approximations 4 Differentiation loses $\bullet 4$ and $\bullet 5$ $5 \int_{4}^{0}(f(x)-g(x)) d x$ loses $\bullet 2$ and possibly $\bullet 5$ $6 \quad \int_{4}^{0}(g(x)-f(x)) d x$ is technically correct and hence all 5 marks are available 7 Accept at $\bullet 3,8 x+2 x^{2}-x^{3}$ appearing from solving "upper" = "lower" 8 using $f(x)+g(x)$ leading to 32 gains $\bullet 2, \bullet 4$ and $\bullet 5$ Example 1 $\begin{array}{ll} \int\left(x^{2}+2 x-x^{3}-x^{2}-6 x\right) d x & \bullet 1 \checkmark \text { bad form } \\ {\left[-\frac{1}{4} x^{4}-2 x^{2}\right]_{0}^{4}} & \bullet 3 X \\ -96 & \bullet 4 \backslash \text { Eased } \\ \therefore \text { area }=96 & \bullet 5 \backslash \\ & 3 \text { marks given } \end{array}$

	Give 1 mark for each -	Illustrations for awarding each -
4 (a) Find the equation of the tangent to the curve with equation $y=x^{3}+2 x^{2}-3 x+2$ at the point where $x=1$. (b) Show that this line is also a tangent to the circle with equation $x^{2}+y^{2}-12 x-10 y+44=0$ and state the coordinates of the point of contact.		
4	1.3.9, 2.4.4 (a) ans: $y=4 x-2$ (b) proof \& $(2,6)$ CN CB 03/104 5 marks 6 marks -1 ss : know to differentiate and start -2 pd: differentiate -3 pd : evaluate gradient ${ }^{4}$ pd : evaluate y -coordinate - 5 ic: state equation of line -6 ss : prepare for substitution ${ }^{-7}$ ss : substitute $\bullet 8$ pd : express in standard form -9 ss : know how to solve - 10 ic : complete proof - ${ }^{11} \mathrm{pd}$: determine coordinates	- $\frac{d y}{d x}=3 x^{2}$ - $\frac{d y}{d x}=3 x^{2}+4 x-3$ - $m=\frac{d y}{d x} x=1 \quad$ gradient stated or implied by $\bullet 5$ -4 $y_{x=1}=2$ -5 $y-2=4(x-1)$ - $6=4 x-2$ - $x^{2}+(4 x-2)^{2}-12 x-10(4 x-2)+44=0$ - $17 x^{2}-68 x+68=0$ - $17(x-2)(x-2)=0$ ${ }^{10}$ equal roots \Rightarrow tangent -11 pt of contact $=(2,6)$
	Alternative 1 ${ }^{6} y=4 x-2$ -7 $C=(6,5)$ and $m_{\text {radius }}=-\frac{1}{4}$ -8 $y-5=-\frac{1}{4}(x-6)$ - 9 start to solve sim. equations ${ }^{10} x=2, y=6$ ${ }^{11}$ check that $(2,6)$ lies on the circle Example 1 $\begin{array}{ll} 3 x^{2}+4 x-3 & \bullet 1 \checkmark \\ 3 \times 1^{2}+4 \times 1-3=4 & \cdot 2 \vee \\ 1^{3}+2-3+2=2 & \bullet 3 \times \\ y-4=2(x-1) & \cdot 4 \times \\ & \cdot 5 \vee \end{array}$ Cave Look out for candidates who use $y=-\frac{1}{4} x+\frac{9}{4}$ instead of $y=4 x-2$ leading to point of contact of $(5,1)$. This is worth 5 marks.	Notes 1.5 is only available after an attempt has been made to find the gradient from differentiation 2 alternatives for $\bullet 9$ -9 $(x-2)(17 x-34)=0$ 3 alternatives for -10 $\begin{aligned} & \bullet^{10} \quad x=2,2 \Rightarrow \text { tangent } \\ \text { or } \quad & \bullet^{10} \quad x=2 \text { only } \Rightarrow \text { tangent } \end{aligned}$ 4 alternative for $\bullet 9$ and $\bullet 10$ - ${ }^{9} b^{2}-4 a c=68^{2}-4 \times 17 \times 68$ ${ }^{10}=68^{2}-68^{2}=0 \Rightarrow$ tangent 5 alternative for $\bullet 10$ and $\bullet 11$ -10 $x=2, y=6$ and $m_{\text {radius }}=-\frac{1}{4}$ ${ }^{11} m_{1} m_{2}=4 \times-\frac{1}{4}=-1 \Rightarrow$ line is tangent 6 For notes 2, 3 and 4 it is acceptable to deal with the reduced quadratic $x^{2}-4 x+4=0$. 7 an " $=0$ " must occur somewhere between $\bullet 7$ and •9

	Give 1 mark for each -	Illustrations for awarding each -	
6 If $f(x)=\cos (2 x)-3 \sin (4 x)$, find the exact value of $f^{\prime}\left(\frac{\pi}{6}\right)$. 4			
6	3.2.2, 3.2.1, 1.2.11 NC BA 03/42 ans : $6-\sqrt{3} \quad 4$ marks ${ }^{-1}$ pd : differentiate compound trig - 2 pd: differentiate compound trig - 3 ic : interpret -4 pd : evaluate derivative	-1 $f^{\prime}(x)=-2 \sin (2 x)+\ldots$ $0^{2} \quad \ldots . . .-12 \cos (4 x)$ - $f^{\prime}\left(\frac{\pi}{6}\right)=-2 \sin \left(\frac{2 \pi}{6}\right)-12 \cos \left(\frac{4 \pi}{6}\right)$ ${ }^{4} \quad 6-\sqrt{3}$	
	Alternative 1 $\begin{array}{ll} \bullet^{1} & f^{\prime}(x)=-2 \sin (2 x)+\ldots \\ \bullet^{2} & \ldots \ldots-12 \cos (4 x) \\ \cdot 0^{3} & -2 \sin \left(\frac{2 \pi}{6}\right)=-\sqrt{3} \\ \cdot{ }^{4} & -12 \cos \left(\frac{4 \pi}{6}\right) \end{array}$ Example 1 Example 2	Notes 1 Evidence for -3 : $\begin{aligned} & \quad-2 \sin 2\left(\frac{\pi}{6}\right)-12 \cos 4\left(\frac{\pi}{6}\right) \\ & -2 \sin \left(\frac{\pi}{3}\right)-12 \cos \left(\frac{2 \pi}{3}\right) \\ & \text { or }-2 \sin \left(\frac{2 \pi}{6}\right)-12 \cos \left(\frac{4 \pi}{6}\right) \\ & \text { or }-2 \times \frac{\sqrt{3}}{2}-12 \times\left(-\frac{1}{2}\right) \\ & \text { or }-1.732+6 \end{aligned}$ but $-2 \times 2 \times \frac{1}{2}-12 \times 4 \times \frac{\sqrt{3}}{2} \quad \cdot 3 X$ 2 Do not penalise the use of 30° at $\bullet 3$ 3 Do not penalise $\frac{-4 \sqrt{3}}{4}$ instead of $-\sqrt{3}$	

	Give 1 mark for each •	Illustrations for awarding each -
7	Part of the graph of $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ is shown in the diagram. (a) Express $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ in the form $k \sin \left(x^{\circ}+a^{\circ}\right)$ where $k>0$ and $0 \leq \mathrm{a}<360$. (b) Find the coordinates of the minimum turning point P.	
7	3.4.1, 3.4.3 Ca BA 03/118 (a) ans: $\sqrt{29} \sin (x+68.2)^{\circ} \quad 4$ marks (b) ans : $\left(201.8^{\circ},-\sqrt{29}\right) \quad 3$ marks ${ }^{-1}$ ic: expand -2 ic: compare coefficients ${ }^{-3} \mathrm{pd}$: process k -4 pd : process angle -5 ic : interpret minimum ${ }^{-6}$ pd : process $\bullet 7$ ic : interpret y-coordinate	- ${ }^{1} k \sin \left(x^{\circ}\right) \cos \left(a^{\circ}\right)+k \cos \left(x^{\circ}\right) \sin \left(a^{\circ}\right)$ stated explicitly - $k \cos \left(a^{\circ}\right)=2, k \sin \left(a^{\circ}\right)=5$ stated explicitly - ${ }^{3} k=\sqrt{29}$ (5.4..) - ${ }^{4} a=68 \cdot 2^{\circ}$ - $\sqrt{29} \sin (x+68.2)^{\circ}=-\sqrt{29}$ ${ }^{6} x_{P}=201 \cdot 8^{\circ}$ ${ }^{.7} \quad y_{P}=-\sqrt{29}$
	Example 1 (b) $\begin{array}{ll} \sqrt{29} \sin (x+68.2)^{\circ}=-1 \\ x=123,281 & \text { award 1 mark } \\ (281,-1) \text { or }(281,-\sqrt{29}) \end{array}$ Example 2 (b) $\begin{array}{ll} \text { at } \mathrm{P}, \mathrm{~m}=0 & \\ 2 \cos (x)+5(-\sin (x))=0 & \bullet 5 X \text { note } 6 \\ \tan (x)=\frac{2}{5} & \bullet 6 \\ x=21.8,201.8 & \\ \begin{array}{ll} x=201.8 \text { at minimum } & \bullet 7 \\ (201.8,-\sqrt{29}) & 2 \text { marks given } \end{array} \end{array}$ Notes cont 10 If the $\bullet 4$ answer is in radians, the mark is lost If the $\bullet 6$ answer is in radians, the mark is lost If both answers at $\bullet 4$ and $\bullet 6$ are in radians, only penalise once.	Notes 1 Candidates may use any form eg $k \sin (x-a)$ as long as the final answer is in the form $k \sin (x+a)$. If not they lose $\bullet 4$ 2 For $\bullet 1$ treat $k \sin x \cos a+\cos x \sin a$ as bad form provided you see $k \cos \left(a^{\circ}\right)$ and $k \sin \left(a^{\circ}\right)$ appearing for $\bullet 2$. 3 For $\bullet 1$ accept $k(\sin x \cos a+\cos x \sin a)$. 4 For $\bullet 4$ accept any answer which rounds to 68 5 The following are acceptable for $\bullet 5$ ${ }^{5} \quad \sin (x+68.2)^{\circ}=-1$ or - ${ }^{5} x+68.2=270$ 6 candidates who use differentiation for (b) will most likely lose 1 mark for omitting the factor $\frac{\pi}{180}$ 7 (201.8 $\left.{ }^{\circ},-\sqrt{29}\right)$ with no working at all may earn marks $\bullet 6$ and $\bullet 7$. $8\left(-\sqrt{29}, 201.8^{\circ}\right)$ with no working at all may earn mark \bullet. 9 See page 16 for advice on solutions obtained via a graphics calculator

Give 1 mark for each •

Illustrations for awarding each •
8 An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.
The triangular cross-section of the tank is rightangled and isosceles, with equal sides of length $x \mathrm{~cm}$.

The tank has a length of $l \mathrm{~cm}$.
(a) Show that the surface area to be lined, $A \mathrm{~cm}^{2}$, is given by $A(x)=x^{2}+\frac{432000}{x}$.
(b) Find the value of x which minimises this surface area.

8		-1 length $=\frac{108000}{\frac{1}{2} x^{2}}$ - 2 SA $=2 \times \frac{1}{2} x^{2}+2 x \times$ length - $\quad \ldots S A=x^{2}+\frac{432000}{x}$ $\bullet^{4} \frac{d A}{d x}=\ldots=0$. $5432000 x^{-1}$ - $62 x-432000 x^{-2}$ - ${ }^{7} x=60$ \bullet^{8} e.g. nature table
	Notes cont 6 For $\bullet 8$, a sketch of the graph would an acceptable alternative. At least 3 point should be shown (eg at $x=59, x=60$ and $x=61$).	Notes 1 Evidence of the nature table should take the form 2 For \bullet, the second derivative is acceptable $\begin{aligned} & \frac{d^{2} A}{d x^{2}}=2+864000 x^{-3} \\ & \frac{d^{2} A}{d x^{2} x=0}=2+4>0 \end{aligned}$ so minimum at $x=60$ 3 A trial and error approach earns no marks 4 The " $=0$ " shown at $\bullet 4$ must appear somewhere for $\bullet 4$ to be awarded (but not necessarilly at $\bullet 4$ stage) 5 in (b) if a candidate uses an incorrect formula then only $\bullet 4, \bullet 5$ and $\bullet 6$ are available i.e. maximum score would be 3 marks. To score 3 marks, working has to be of a similar difficulty.

	Give 1 mark for each •	Illustrations for awarding each •	
10	Solve the equation $3 \cos (2 x)+10 \cos (x)-1=0$ for	$0 \leq x \leq \pi$, correct to 2 decimal places.	5
10	2.3.1 Ca BA 03/106 ans: 1.23 radians 5 marks -1 ss : know to use double angle formula - ${ }^{2}$ pd : arrange in standard form -3 ss : know how to solve -4 pd : solve - 5 pd : solve	- ${ }^{1} 3\left(2 \cos ^{2}(x)-1\right) \ldots \ldots$. - $6 \cos ^{2}(x)+10 \cos (x)-4=0$ - $2(3 \cos (x)-1)(\cos (x)+2)$ -4 $\cos (x)=\frac{1}{3}$ and $\cos (x)=-2$ - $x=1.23$ and no solution	
	Example 1 $6 \cos ^{2}(x)+10 \cos (x)-2=0$ leading to $\cos (x)=0.180$ or $\cos (x)=-1.84$ $x=1.39$ radians no solution -1 X - 2 X -3 X -4 X -5 \times 4 marks given	Notes 1 alternative for • 3 $\cdot^{3} \quad \cos (x)=\frac{-10 \pm \sqrt{10^{2}-4 \times 6 \times(-4)}}{2 \times 6}$ $2-5$ must include some indication that $\cos (x)=-2$ has no solutions. 3 in the event of other substitutions being used for $\cos (2 x)$, no credit can be given until the equation reduces to a quadratic in $\cos (x)$. $4-4$ and $\bullet 5$ are only available as a consequence of solving a quadratic equation. 5.4 and $\bullet 5$ may also be marked as follows ${ }^{4} \quad \cos (x)=\frac{1}{3}$ and $x=1.23$ -5 $\cos (x)=-2$ and no solution 6 For $\bullet 5$, accept $\frac{70.5 \pi}{180}$ in lieu of 1.23 7 If an answer starts $\begin{aligned} 3 \times 2 \cos ^{2}(x)-1+10 \cos (x)-1 & =0 \\ 6 \cos ^{2}(x)+10 \cos (x)-4 & =0 \end{aligned}$ then treat the first line as bad form. If an answer starts $\begin{aligned} 3 \times 2 \cos ^{2}(x)-1+10 \cos (x)-1 & =0 \\ 6 \cos ^{2}(x)+10 \cos (x)-2 & =0 \end{aligned}$ then use Example 1.	

	Give 1 mark for each - Illustrations for awarding each •
1	Solutions obtained by employing the facilities on a graphics calculator (a) $\bullet^{1} f(2)=6 \times 2^{3} \ldots \ldots$ - $2 f(2)=48-20-34+6=0$ (b) $\bullet^{3} \quad$ for a sketch of the cubic with the zeroes indicated at $2, \frac{1}{3}$ and $-\frac{3}{2}$ and the statement : the roots are $2, \frac{1}{3}$ and $-\frac{3}{2}$. so $f(x)=k(x-2)\left(x+\frac{3}{2}\right)\left(x-\frac{1}{3}\right)$ by comparing the leading terms, for example, of $f(x)=k(x-2)\left(x+\frac{3}{2}\right)\left(x-\frac{1}{3}\right)$ and $f(x)=6 x^{3}-5 x^{2}-17 x+6$ we have $k=6$ and so $\quad f(x)=(x-2)(2 x+3)(3 x-1)$ explicitly stated
7	The graphics calculator plot shows the following (a) ${ }^{1}$ annotated on diagram \max at $(21.8,5.4)$ and \min at $(201.8,-5.4)$ - annotated on diagram $(-68.2,0)$ or $(291.8,0)$ - " "from the amplitude $k=5.4$ " - "from the left shift $a=68.2^{\prime \prime}$ (b) - ${ }^{5},{ }^{6} \quad P=(201.8,-5.4)$) -7 The last mark has to be awarded for some communication about the minimum e.g. the minimum should occur at 270 shifted left by 68.2

Give 1 mark for each •
Illustrations for awarding each •
1 After a leaflet drop advertising a new garden centre, a random sample of households were surveyed. The results are summarised in the following table.

	Read the leaflet	Did not read the leaflet
Visited the centre	80	20
Did not visit the centre	60	40

(a) Find (i) P (leaflet read)
(ii) $\quad \mathrm{P}$ (leaflet read and garden centre visited).
(b) Comment on whether the proportion who had visited the garden centre was the same
whether or not they had read the leaflet.

S1		- $\frac{100}{200}$ $\bullet^{2} \frac{80}{20}$ $\bullet^{3} \frac{80}{140}=0.57$. $4 \frac{20}{60}=0.33$ \& not the same ${ }^{-5}$ seems that the leaflet had some effect

Give 1 mark for each •
 Illustrations for awarding each •

3 The regulations for a charity state that the Board of Trustees must consist of 6 people.
(a) How many ways are there of choosing 6 members from 10 nominations?

Ideally the Board should consist of four employees of the charity and two persons not employed by the charity (i.e. volunteers).
Ten people have been nominated for the Board. Six are employees and four are volunteers.
(b) If each nominee has an equally likely chance of being selected, what is the probability that the six members elected will form the ideal choice, that is four employees and two volunteers?

S3	4.2.5, 4.2.10 CN B03/128 (a) ans: 210 (b) ans : $\frac{3}{7}$ -1 $\mathrm{ss}:$ know to use nCr -2 pd : process -3 pd : process -4 ss : know how to determine probability	- ${ }^{10} \mathrm{C}_{6}=210$ - ${ }^{2} 4$ workers: ${ }^{6} C_{4}=15$ - ${ }^{3} 2$ co - opts: ${ }^{4} C_{2}=6$ - $\quad \mathrm{P}$ (ideal) $=\frac{1506}{210}=\frac{3}{7}$

Give 1 mark for each -
 Illustrations for awarding each -

4 The cumulative distribution function for a continuous random variable X is given by

$$
F(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{4} x^{2} & 0 \leq x \leq 2 \\
1 & x>2
\end{array}\right.
$$

(a) Calculate the exact value of the median.
(b) Determine the probability density function $f(x)$. 2
(c) Calculate the mean of X. 2

Give 1 mark for each -	Illustrations for awarding each -
Additional marks in Paper 2	
Question $1 \quad+1$ - 1 ss : know to evaluate $f(2)$ ${ }^{-2}$ pd : evaluate $f(2)$ and complete proof -3 ss : synthetic division or long division - 4 ic: state quadratic factor ${ }^{-5} \mathrm{pd}$: factorise fully	- ${ }^{1} f(2)=6 \times 2^{3} \ldots \ldots$ - ${ }^{2} f(2)=48-20-34+6=0$ so $(x-2)$ is factor -3 $\left.2 \begin{array}{\|cccc}6 & -5 & -17 & 6 \\ 12 & 14 & -6\end{array}\right]$ - ${ }^{4} 6 x^{2}+7 x-3$ -5 $(x-2)(2 x+3)(3 x-1)$
Question $2+3$ ${ }^{-1}$ ic : interpret amplitude $\bullet 2$ ic: explanation .5 ic : interpret period $\bullet 4$ ic : explanation $\cdot 5$ ic : interpret vertical displacement $\cdot 6$ ic: explanation	-1 $a=4$ - ${ }^{2}$ half the vertical distance between max and min $0^{3} \quad b=2$ -4 graph completes 2 cycles between 0 and 2π - ${ }^{5} c=1$ -6 half way between $\mathrm{y}=5$ and $\mathrm{y}=-3$
Question 3 $+1$ -1 ss: area $=\int$ upper function - lower function -2 ic: interpret diagram for limits ${ }^{-3} \mathrm{pd}$: simplify prior to integration ${ }^{4}$ pd: integrate ${ }^{.5}$ ic : interpret the limits ${ }^{-6} \mathrm{pd}$: evaluate using limits	$\bullet^{1} \int\left(\left(x^{2}+2 x\right)-\left(x^{3}-x^{2}-6 x\right)\right) d x$ stated, or implied by \bullet^{3} $\bullet^{2} \int_{0}^{4} \ldots$. - ${ }^{3} \int\left(8 x+2 x^{2}-x^{3}\right) d x$ - $\left[4 x^{2}+\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{4}$ - ${ }^{5}\left(4 \times 4^{2}+\frac{2}{3} \times 4^{3}-\frac{1}{4} \times 4^{4}\right)-0$ - $642 \frac{2}{3}$
Question $4 \quad+1$. 1 ss : know to differentiate ${ }^{\bullet} 2 \mathrm{pd}$: differentiate ${ }^{-3} \mathrm{pd}$: differentiate ${ }^{-4} \mathrm{pd}$: evaluate gradient ${ }^{.5} \mathrm{pd}$: evaluate y-coordinate -6 ic : state equation of line	- $\frac{d y}{d x}=$ -2 any 2 terms from $3 x^{2}+4 x-3$ - $\frac{d y}{d x}=3 x^{2}+4 x-3$ - $m=\frac{d y}{d x x=1}=4 \quad$ gradient stated or implied by $\bullet 6$ - ${ }^{5} y_{x=1}=2$ -6 $y-2=4(x-1)$
Question 5 - 1 ic : interpret $f(-x)$ ${ }^{-2}$ ic: communication - 3 ic : communication -4 ic : interpret $2 f$ -5 ic: communication	- 1 refl. in y-axis - ${ }^{2}$ annotate any two from $(0,-3),(4,2),(3,0),(-1,0)$ ${ }^{3}$ annotate remaining two - ${ }^{4}$ a scaling \& $(3,0),(-1,0)$ - 5 annotate $(0,-6),(4,4)$

Give 1 mark for each -	Illustrations for awarding each -
Question $6 \quad+1$ - 1 pd : differentiate compound trig - 2 pd : differentiate compound trig - 3 ic : interpret ${ }^{4}$ pd : evaluate derivative ${ }^{.5} \mathrm{pd}$: evaluate derivative	- ${ }^{1} f^{\prime}(x)=-2 \sin (2 x)+\ldots$ $\bullet^{2} \quad \ldots \ldots-12 \cos (4 x)$ - $f^{\prime}\left(\frac{\pi}{6}\right)=-2 \sin \left(\frac{2 \pi}{6}\right)-12 \cos \left(\frac{4 \pi}{6}\right)$ - $-2 \sin \left(\frac{2 \pi}{6}\right)=-\sqrt{3}$ - $5-12 \cos \left(\frac{4 \pi}{6}\right)=6$
Question $8 \quad+2$ -1 ss : identify crucial aspect ${ }^{-2}$ ic : start proof ${ }^{-3}$ ic : complete proof -4 ss : know to differentiate .5 ss : know to set derivative to zero -6 pd : express in standard form ${ }^{-7}$ pd: differentiate ${ }^{-8} \mathrm{pd}$: start to solve ${ }^{-9} \mathrm{pd}$: solve -10 ic : justify minimum	- ${ }^{1}$ length $=\frac{108000}{\frac{1}{2} x^{2}}$ - ${ }^{2} S A=2 \times \frac{1}{2} x^{2}+2 x \times$ length - \quad...SA $=x^{2}+\frac{432000}{x}$ -4 $\frac{d A}{d x}=\ldots$ - $5 \frac{d A}{d x}=0$ - $6432000 x^{-1}$. $72 x-432000 x^{-2}$ - $2 x=\frac{432000}{x^{2}}$ - $x=60$ ${ }^{10}$ e.g. nature table
Question $9 \quad+1$ -1 ss : use distributive law $\bullet 2$ pd : expand scalar product -3 pd : expand scalar product ${ }^{4}$ ic: substitution $\bullet 5 \mathrm{pd}$: complete calculations	${ }^{-1} \quad a .(a+b)=a . a+a . b$ - ${ }^{2} \quad a . b=5 \times 4 \cos (\theta)$. ${ }^{3}$ a. $a=5^{2}$ - $20 \cos (\theta)=11$ ${ }^{5} \theta=56.6^{\circ}$
Increase in marks for Paper $1=9$ Increase in marks for Paper 2=11 Total increase in marks $=20$. For 2004 the marks will allocated as follows: Paper 160 Paper 270 Total 130	

