X100/12/02

NATIONAL QUALIFICATIONS 2013

WEDNESDAY, 22 MAY $1.00 \mathrm{PM}-2.30 \mathrm{PM}$

MATHEMATICS HIGHER
Paper 1
(Non-calculator)

Read carefully

Calculators may NOT be used in this paper.

Section A - Questions 1-20 (40 marks)

Instructions for completion of Section A are given on Page two.
For this section of the examination you must use an HB pencil.

Section B (30 marks)

1 Full credit will be given only where the solution contains appropriate working.
2 Answers obtained by readings from scale drawings will not receive any credit.

Read carefully

1 Check that the answer sheet provided is for Mathematics Higher (Section A).
2 For this section of the examination you must use an HB pencil and, where necessary, an eraser.

3 Check that the answer sheet you have been given has your name, date of birth, SCN (Scottish Candidate Number) and Centre Name printed on it.
Do not change any of these details.
4 If any of this information is wrong, tell the Invigilator immediately.
5 If this information is correct, print your name and seat number in the boxes provided.
6 The answer to each question is either A, B, C or D. Decide what your answer is, then, using your pencil, put a horizontal line in the space provided (see sample question below).
7 There is only one correct answer to each question.
8 Rough working should not be done on your answer sheet.
9 At the end of the exam, put the answer sheet for Section A inside the front cover of your answer book.

Sample Question

A curve has equation $y=x^{3}-4 x$.
What is the gradient at the point where $x=2$?
A 8
B 1
C 0
D -4
The correct answer is $\mathbf{A}-8$. The answer \mathbf{A} has been clearly marked in pencil with a horizontal line (see below).

Changing an answer

If you decide to change your answer, carefully erase your first answer and, using your pencil, fill in the answer you want. The answer below has been changed to \mathbf{D}.

$$
\begin{array}{llll}
\mathbf{A} & \text { B } & \text { C } & \text { D } \| l y
\end{array}
$$

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

ALL questions should be attempted.

1. The functions f and g are defined by $f(x)=x^{2}+1$ and $g(x)=3 x-4$, on the set of real numbers.
Find $g(f(x))$.
A $3 x^{2}-1$
B $9 x^{2}-15$
C $9 x^{2}+17$
D $3 x^{3}-4 x^{2}+3 x-4$
2. The point $\mathrm{P}(5,12)$ lies on the curve with equation $y=x^{2}-4 x+7$.

What is the gradient of the tangent to this curve at P ?
A 2
B 6
C 12
D 13
3. Calculate the discriminant of the quadratic equation $2 x^{2}+4 x+5=0$.

A -32
B -24
C 48
D 56
4. Which of the following shows the graph of $y=4 \cos 2 x-1$, for $0 \leq x \leq \pi$?

A

B

C

D

5. The line L passes through the point $(-2,-1)$ and is parallel to the line with equation $5 x+3 y-6=0$.
What is the equation of L ?
A $3 x+5 y-11=0$
B $3 x+5 y+11=0$
C $\quad 5 x+3 y-13=0$
D $5 x+3 y+13=0$
6. What is the remainder when $x^{3}+3 x^{2}-5 x-6$ is divided by $(x-2)$?

A 0
B 3
C 4
D 8
7. Find $\int x(3 x+2) d x$.

A $x^{3}+c$

B $x^{3}+x^{2}+c$
C $\quad \frac{1}{2} x^{2}\left(\frac{3}{2} x^{2}+2 x\right)+c$
D $3 x^{2}+2 x+c$
8. A sequence is defined by the recurrence relation $u_{n+1}=0 \cdot 1 u_{n}+8$, with $u_{1}=11$. Here are two statements about this sequence:
(1) $u_{0}=9 \cdot 1$;
(2) The sequence has a limit as $n \longrightarrow \infty$.

Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct.
C Only statement (2) is correct.
D Both statements are correct.
9. The diagram shows a right-angled triangle with sides and angles as marked.

Find the value of $\sin 2 x$.
A $\frac{4}{5}$
B $\frac{2}{5}$
C $\frac{2}{\sqrt{5}}$
D $\frac{1}{\sqrt{5}}$
10. If $0<a<90$, which of the following is equivalent to $\cos (270-a)^{\circ}$?

A $\cos a^{\circ}$
B $\quad \sin a^{\circ}$
C $-\cos a^{\circ}$
D $-\sin a^{\circ}$
11. The diagram shows a cubic curve with equation $y=f(x)$.

Which of the following diagrams could show the curve with equation $y=-f(x-k), k>0$?

A

B

C

D

12. If $\mathbf{f}=3 \mathbf{i}+2 \mathbf{k}$ and $\mathbf{g}=2 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, find $|\mathbf{f}+\mathbf{g}|$.

A $\sqrt{14}$ units
B $\sqrt{42}$ units
C $\sqrt{66}$ units
D $\sqrt{70}$ units
13. A function f is defined on a suitable domain by $f(x)=\frac{x+2}{x^{2}-7 x+12}$.

What value(s) of x cannot be in this domain?
A $\quad 3$ and 4
B $\quad-3$ and -4
C $\quad-2$
D 0
14. Given that $|\mathbf{a}|=3,|\mathbf{b}|=2$ and $\mathbf{a} \cdot \mathbf{b}=5$, what is the value of $\mathbf{a} \cdot(\mathbf{a}+\mathbf{b})$?

A 11
B 14
C 15
D 21
15. Solve $\tan \left(\frac{x}{2}\right)=-1$ for $0 \leq x<2 \pi$.

A $\frac{\pi}{2}$
B $\frac{7 \pi}{8}$
C $\frac{3 \pi}{2}$
D $\frac{15 \pi}{8}$
16. Find $\int(1-6 x)^{-\frac{1}{2}} d x$ where $x<\frac{1}{6}$.

A $\quad \frac{1}{9}(1-6 x)^{-\frac{3}{2}}+c$
B $3(1-6 x)^{-\frac{3}{2}}+c$
C $-\frac{1}{3}(1-6 x)^{\frac{1}{2}}+c$
D $-3(1-6 x)^{\frac{1}{2}}+c$
17. The diagram shows a curve with equation of the form $y=k x(x+a)^{2}$, which passes through the points $(-2,0),(0,0)$ and $(1,3)$.

What are the values of a and k ?

	a	k
A	-2	$\frac{1}{3}$
B	-2	3
C	2	$\frac{1}{3}$
D	2	3

18. Given that $y=\sin \left(x^{2}-3\right)$, find $\frac{d y}{d x}$.

A $\sin 2 x$

B $\cos 2 x$

C $2 x \sin \left(x^{2}-3\right)$

D $2 x \cos \left(x^{2}-3\right)$
19. Solve $1-2 x-3 x^{2}>0$, where x is a real number.

A $x<-1$ or $x>\frac{1}{3}$
B $-1<x<\frac{1}{3}$
C $x<-\frac{1}{3}$ or $x>1$
D $-\frac{1}{3}<x<1$
20. The graph of $\log _{3} y$ plotted against x is a line through the origin with gradient 2 , as shown.

Express y in terms of x.
A $y=2 x$

B $y=9 x$

C $y=6^{x}$

D $y=9^{x}$

SECTION B

ALL questions should be attempted.

21. Express $2 x^{2}+12 x+1$ in the form $a(x+b)^{2}+c$.
22. A circle C_{1} has equation $x^{2}+y^{2}+2 x+4 y-27=0$.
(a) Write down the centre and calculate the radius of C_{1}.
(b) The point $\mathrm{P}(3,2)$ lies on the circle C_{1}.

Find the equation of the tangent at P .
(c) A second circle C_{2} has centre $(10,-1)$. The radius of C_{2} is half of the radius of C_{1}.
Show that the equation of C_{2} is $x^{2}+y^{2}-20 x+2 y+93=0$.
(d) Show that the tangent found in part (b) is also a tangent to circle C_{2}.
23. (a) The expression $\sqrt{3} \sin x^{\circ}-\cos x^{\circ}$ can be written in the form $k \sin (x-a)^{\circ}$, where $k>0$ and $0 \leq a<360$.
Calculate the values of k and a.
(b) Determine the maximum value of $4+5 \cos x^{\circ}-5 \sqrt{3} \sin x^{\circ}$, where $0 \leq x<360$.
24. (a) (i) Show that the points $\mathrm{A}(-7,-8,1), \mathrm{T}(3,2,5)$ and $\mathrm{B}(18,17,11)$ are collinear.
(ii) Find the ratio in which T divides AB .
(b) The point C lies on the x-axis.

If TB and TC are perpendicular, find the coordinates of C .

X100/12/03

\(\begin{array}{ll}NATIONAL \& WEDNESDAY, 22 \mathrm{MAY}
QUALIFICATIONS \& 2.50 PM-4.00 \mathrm{PM}\end{array} \quad\) MATHEMATICS 2013

Read carefully

1 Calculators may be used in this paper.

2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. The first three terms of a sequence are 4,7 and 16 .

The sequence is generated by the recurrence relation

$$
u_{n+1}=m u_{n}+c, \text { with } u_{1}=4 .
$$

Find the values of m and c.
2. The diagram shows rectangle PQRS with $P(7,2)$ and $Q(5,6)$.

(a) Find the equation of QR .
(b) The line from P with the equation $x+3 y=13$ intersects QR at T .

Find the coordinates of T.
(c) Given that T is the midpoint of QR , find the coordinates of R and S .
3. (a) Given that $(x-1)$ is a factor of $x^{3}+3 x^{2}+x-5$, factorise this cubic fully.
(b) Show that the curve with equation

$$
y=x^{4}+4 x^{3}+2 x^{2}-20 x+3
$$

has only one stationary point.
Find the x-coordinate and determine the nature of this point.
4. The line with equation $y=2 x+3$ is a tangent to the curve with equation $y=x^{3}+3 x^{2}+2 x+3$ at $\mathrm{A}(0,3)$, as shown in the diagram.

The line meets the curve again at B.
Show that B is the point $(-3,-3)$ and find the area enclosed by the line and the curve.
5. Solve the equation

$$
\log _{5}(3-2 x)+\log _{5}(2+x)=1, \text { where } x \text { is a real number }
$$

6. Given that $\int_{0}^{a} 5 \sin 3 x d x=\frac{10}{3}, \quad 0 \leq a<\pi$,
calculate the value of a.
7. A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1

The frame of a shelter is to be made of rods of two different lengths:

- $\quad x$ metres for top and bottom edges;
- $\quad y$ metres for each sloping edge.

Condition 2

The frame is to be covered by a rectangular sheet of material.
The total area of the sheet is $24 \mathrm{~m}^{2}$.
(a) Show that the total length, L metres, of the rods used in a shelter is given by

$$
L=3 x+\frac{48}{x} .
$$

(b) These rods cost $£ 8 \cdot 25$ per metre.

To minimise production costs, the total length of rods used for a frame should be as small as possible.
(i) Find the value of x for which L is a minimum.
(ii) Calculate the minimum cost of a frame.
8. Solve algebraically the equation

$$
\sin 2 x=2 \cos ^{2} x \quad \text { for } 0 \leq x<2 \pi
$$

9. The concentration of the pesticide, Xpesto, in soil can be modelled by the equation

$$
P_{t}=P_{0} e^{-k t}
$$

where:

- $\quad P_{0}$ is the initial concentration;
- $\quad P_{t}$ is the concentration at time t;
- $\quad t$ is the time, in days, after the application of the pesticide.
(a) Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of Xpesto is 25 days, find the value of k to 2 significant figures.
(b) Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?

2013 Mathematics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2013 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 Award one mark for each • . There are no half marks.

3 The mark awarded for each part of a question should be entered in the outer right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, as a whole number, should be written.

Marks in this column whole numbers only

Do not record marks on scripts in this manner.

4 Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, ie a completely empty space, then NR should be written in the outer margin.

5 Every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.

6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (\downarrow), in the margin, at the earlier stages.

7 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

8 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.
$\checkmark \quad$ A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to
\qquad
X indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of follow through from an error.

A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been eased.

A tilde should be used to indicate a minor error which is not being penalised, e.g. bad form.

This should be used where a candidate is given the benefit of the doubt.
A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and essential for the later stages of SQA procedures.
The examples below illustrate the use of the marking symbols .

> Example 1 $\begin{aligned} & y=x^{3}-6 x^{2} \\ & \frac{d y}{d x}=3 x^{2}-12 \\ & 3 x^{2}-12=0^{\wedge} \\ & x=2 \\ & y=-16 \boldsymbol{~}\end{aligned}$.

Example 3

$3 \sin x-5 \cos x$
$k \sin x \cos a-\cos x \sin a \downharpoonleft \bullet^{1}$
$k \cos a=3, k \sin a=5 \quad \checkmark \bullet^{2}$

Example 2

$\mathrm{A}(4,4,0), \mathrm{B}(2,2,6), \mathrm{C}(2,2,0)$
$\overrightarrow{\mathrm{AB}}=\underline{\mathbf{b}+\mathbf{a}}=\left(\begin{array}{l}6 \\ 6 \\ 6\end{array}\right)_{\mathrm{X} \bullet^{1}}$
$\overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}6 \\ 6 \\ 0\end{array}\right)$
Example 4

Since the remainder is $0, x-4$ must be a factor. $\sqrt{ } \bullet^{3}$

$$
\begin{aligned}
& \left(x^{2}-x-2\right) \quad \sqrt{ } \bullet^{4} \\
& (x-4)(x+1)(x-2) \quad \checkmark \bullet^{5} \\
& x=4 \text { or } x=-1 \text { or } x=2
\end{aligned}
$$

Page 3

10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.

11 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

$$
\begin{array}{lllll}
\text { Illustrative Scheme: } & \bullet^{5} & x=2, x=-4 & \text { Cross marked: } & \bullet^{5} \\
& \bullet^{6} & y=5, y=-7
\end{array}
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
13 In final answers, numerical values should be simplified as far as possible.
Examples:
$\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1 \frac{1}{4}$
$\frac{15}{0.3}$ should be simplified to 50
$\sqrt{64}$ must be simplified to 8
$\frac{43}{1}$ should be simplified to 43
$\frac{4 / 5}{3}$ should be simplified to $\frac{4}{15}$
The square root of perfect squares up to and including 100 must be known.

14 Regularly occurring responses (ROR) are shown in the marking instructions to help mark common and/or non-routine solutions. RORs may also be used as a guide in marking similar non-routine candidate responses.

15 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form;
- Repeated error within a question, but not between questions or papers.

16 In any 'Show that . . .' question, where the candidate has to arrive at a formula, the last mark of that part is not available as a follow through from a previous error.

17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

18 In the exceptional circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

19 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

20 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
21 It is of great importance that the utmost care should be exercised in totalling the marks.
A tried and tested procedure is as follows:

Step 1 Manually calculate the total from the candidate's script.
Step 2 Check this total using the grid issued with these marking instructions.
Step 3 In SCORIS, enter the marks and obtain a total, which should now be compared to the manual total.

This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

22 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.

23 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.

	Question	Answer
	1	A
	2	B
	3	B
	4	A
	5	D
	6	C
	7	B
	8	C
	9	A
	10	D
	11	B
	12	C
	13	A
	14	B
	15	C
	16	C
	17	C
	18	D
	19	B
	20	D
Summary	A	4
	B	6
	C	6
	D	4

Paper 1-Section B

Question	Generic Scheme	Illustrative Scheme	Max Mark
23 a	The expression $\sqrt{3} \sin x^{\circ}-\cos x^{\mathrm{o}}$ can be written in the form $k \sin (x-a)^{\mathrm{o}}$, where $k>0$ and $0 \leq a<360$. Calculate the values of k and a.		
$\bullet \bullet^{1}$ ss $\bullet \bullet^{2}$ ic \bullet^{3} pd p \bullet pd p	e compound angle formula mpare coefficients ocess for k ocess for a	- $\quad k \sin x^{o} \cos a^{o}-k \cos x^{o} \sin a^{o} \quad$ stated explicitly - ${ }^{2} \quad k \cos a^{0}=\sqrt{3}$ and $k \sin a^{o}=1 \quad$ stated explicitly - $2($ do not accept $\sqrt{4})$ - ${ }^{4} \quad 30$	4
Notes:			

1. Treat $k \sin x^{o} \cos a^{o}-\cos x^{o} \sin a^{o}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. $2 \sin x^{o} \cos a^{o}-2 \cos x^{o} \sin a^{o}$ or 2($\left.\sin x^{o} \cos a^{o}-\cos x^{o} \sin a^{o}\right)$ is acceptable for \bullet^{1} and \bullet^{3}.
3. Accept $k \cos a^{o}=\sqrt{3}$ and $-k \sin a^{o}=-1$ for \bullet^{2}.
4. \bullet^{2} is not available for $k \cos x^{\mathrm{o}}=\sqrt{3}$ and $k \sin x^{o}=1$, however, \bullet^{4} is still available.
5. \bullet^{3} is only available for a single value of $k, k>0$.
6. \bullet^{4} is only available for a single value of a expressed in degrees.
7. Candidates who identify and use any form of the wave equation may gain \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \sin (x-a)^{\circ}$.
8. Do not penalise omission of degree sign at \bullet^{1} or \bullet^{2}.

Regularly Occurring Responses:

Response 1: Missing information in working.

Candidate A $\begin{aligned} 2 \cos a & =\sqrt{3} \\ -2 \sin a & =-1 \\ \tan a & =\frac{1}{\sqrt{3}} \\ a & =30 \end{aligned}$	Candidate B	Candidate \mathbf{C} $\begin{aligned} & k \sin x^{o} \cos a^{o}-k \cos x^{o} \sin a^{o} \\ & k \cos a=\sqrt{3}, k \sin a=1 \\ & k=2 \text { or }-2 \\ & \tan a=\frac{1}{\sqrt{3}} \\ & \quad a=30 \text { or } 210 \end{aligned}$ However candidates who then write $\sqrt{3} \sin x^{\circ}-\cos x^{0}=2 \sin (x-30)^{\circ}$ would gain \bullet^{3} and \bullet^{4}
Response 2: Labelling incorrect, $\sin (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}$ from formula list.		
Candidate D $\begin{aligned} & k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B} \bullet^{1} \times \\ & k \cos a=\sqrt{3} \\ & k \sin a=1 \\ & \tan a=\frac{1}{\sqrt{3}} \\ & a=30 \end{aligned}$	Candidate E $k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B} \bullet^{1} \times$ $k \cos x=\sqrt{3}$ $k \sin x=1$ $\bullet^{2} x$ $\tan x=\frac{1}{\sqrt{3}}$ $x=30$	Candidate F $\begin{aligned} & k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B} \\ & k \cos \mathrm{~B}=\sqrt{3} \\ & k \sin \mathrm{~B}=1 \\ & \tan \mathrm{~B}=\frac{1}{\sqrt{3}} \\ & \quad \mathrm{~B}=30 \end{aligned}$

1. Any appropriate combination of vectors is acceptable.
2. \bullet^{3} can only be awarded if a candidate has stated, common point, parallel (common direction) and collinear.
3. Treat $\left(\begin{array}{c}10 \\ 10 \\ 4\end{array}\right)$ written as $(10,10,4)$ as bad form.
4. Accept $1: \frac{3}{2}$ or $\frac{2}{3}: 1$
5. \bullet^{3} requires evidence of vectors being parallel, simply stating parallel is insufficient.

Regularly Occurring Responses:

Candidate D

$\overrightarrow{\mathrm{AT}}=\left(\begin{array}{c}10 \\ 10 \\ 4\end{array}\right)$ or $\quad \overrightarrow{\mathrm{TB}}=\left(\begin{array}{c}15 \\ 15 \\ 6\end{array}\right)$
$\overrightarrow{\mathrm{TB}}=\frac{2}{3} \overrightarrow{\mathrm{AT}}$
TB and AT are parallel. T is a common point so A, T and B are collinear.

[^0]

Paper 2

6. Any strategy that relies upon the rectangle being composed of two congruent squares can only be given credit if this fact has been justified. Candidates who have already been penalised in 2(b) for making this assumption can gain full credit in (c).
7. If $R(-3,2)$ and $S(-1,-2)$ appear without working then \bullet^{7}, \bullet^{8} and \bullet^{9} are not available.

Regularly Occurring Responses:

Response 1: Examples of evidence for stepping out.

Similar evidence is required for finding S.

Response 2: Examples of insufficient evidence for stepping out.

1. Accept any of the following for \bullet^{4}
a) $b^{2}-4 a c=16-20<0$, so does not factorise.
b) $b^{2}-4 a c=16-4 \times 5<0$, so does not factorise.
c) $16-4 \times 5<0$, so does not factorise.
2. Do not accept any of the following for \bullet^{4}
a) $b^{2}-4 a c<0$, so does not factorise.
b) $(x-1)\left(x^{2}+4 x+5\right)$ does not factorise.
c) $(x-1)(x \ldots \ldots)(x \ldots$.$) cannot factorise further.$
3. Candidates who use algebraic long division to arrive at $(x-1)\left(x^{2}+4 x+5\right)$ gain marks \bullet^{1}, \bullet^{2} and \bullet^{3}.
4. Candidates who complete the square and make a relative comment regarding no real roots gain \bullet^{4}.
5. Treat $(x-1) x^{2}+4 x+5$, with a valid reason, as bad form for $\bullet{ }^{4}$.

Regularly Occurring Responses:

Candidate A	
$x^{2}+4 x+5$	\bullet^{3}
$(x-1)(x+5)(x-1)$	$\bullet^{4} \times$

Candidate B

$$
\begin{aligned}
x^{3}+3 x^{2}+x-5 & =(x-1)\left(\ldots x^{2}+\ldots x+\ldots\right) \\
& =(x-1)\left(x^{2}+4 x+5\right) \\
& \text { With a valid reason. }
\end{aligned}
$$

Candidate C
$x^{2}+4 x+5$
$(x-1) x^{2}+4 x+5$
$b^{2}-4 a c=16-20<0$ so does not
factorise.

Candidate B

$\int_{-3}^{0} x^{3}+3 x^{2}+2 x+3-2 x+3$
$=\frac{x^{4}}{4}+x^{3}$

Candidate \mathbf{C}
$\int_{-3}^{0}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$ $=-\frac{27}{4} \quad$ cannot be negative \quad so $=\frac{27}{4} \quad \bullet^{6} \times$ However $\quad \ldots .=-\frac{27}{4} \quad$ so Area $=\frac{27}{4}$
Reference to 'Area' must be made.

Candidate D

$\int_{-3}^{0}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$
$\bullet^{2} \sqrt{3}$
$=\left[\frac{1}{4} x^{4}+x^{3}+x^{2}+3 x-x^{2}+3 x\right]_{-3}^{0}$
${ }^{-4} x$
$=[0]-\left[\frac{1}{4}(-3)^{4}+(-3)^{3}+(-3)^{2}+3(-3)-(-3)^{2}+3(-3)\right]$
$=\frac{-45}{4}$
$\bullet^{6} \times$
See Candidate C
Candidate \mathbf{E}
$\int_{-3}^{3}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$

$$
\bullet^{2} \times \bullet^{3}
$$

$=\left[\frac{1}{4} x^{4}+x^{3}\right]_{-3}^{3}$
$=\left[\frac{1}{4}(3)^{4}+(3)^{3}\right]-\left[\frac{1}{4}(-3)^{4}+(-3)^{3}\right]$
$=54$ units 2

Candidate \mathbf{F}

$\int_{-3}^{3}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$

$$
\bullet^{2} \times \bullet^{3}
$$

$=\left[\frac{1}{4} x^{4}+x^{3}+x^{2}+3 x-x^{2}+3 x\right]_{-3}^{3}$
$\cdot{ }^{4} \times$
$=\left[\frac{1}{4}(3)^{4}+(3)^{3}+(3)^{2}+3(3)-(3)^{2}+3(3)\right]-\left[\frac{1}{4}(-3)^{4}+(-3)^{3}+(-3)^{2}+3(-3)-(-3)^{2}+3(-3)\right] \cdot{ }^{5} \times$
$=54+18+18$
$=90$ units 2

Candidate G

$\int_{-3}^{0} x^{3}+3 x^{2}+2 x+3-2 x+3 d x$
$=\int_{-3}^{0} x^{3}+3 x^{2}+6 d x$
$=\left[\frac{1}{4} x^{4}+x^{3}+6 x\right]_{-3}^{0}$
$=[0]-\left[\frac{1}{4}(-3)^{4}+(-3)^{3}+6(-3)\right]$
$=\frac{99}{4}$ units 2

Question		- Generic Scheme	Illustrative Scheme	Max Mark
9	a	The concentration of the pesticide, Xpesto $P_{t}=P_{0} e^{-k t}$ where: - $\quad P_{0}$ is the initial concentration; - $\quad P_{t}$ is the concentration at time t; - t is the time, in days, after the applicat Once in the soil, the half-life of a pesticide to one half of its initial value. If the half-life of Xpesto is 25 days, find the - $1 \quad$ ic interpret half-life - 2 pd process equation - $3 \quad$ ss write in logarithmic form - $4 \quad \mathrm{pd} \quad$ process for k	an be modelled by the equation pesticide. ne taken for its concentration to be reduced $\mathrm{f} k$ to 2 significant figures. -1 $\quad \frac{1}{2} P_{0}=P_{0} e^{-25 \mathrm{k}}$ stated or implied by $\boldsymbol{\bullet}^{\mathbf{2}}$ $\bullet^{2} \quad e^{-25 \mathrm{k}}=\frac{1}{2}$ -3 $\quad \log _{e} \frac{1}{2}=-25 k$ - ${ }^{4} \quad k \approx 0.028$	4
Notes:				
1. Do not penalise candidates who substitute a numerical value for P_{0} in part (a).				
Regularly Occurring Responses:				
Candidate A$\begin{aligned} & \frac{1}{2} P_{0}=P_{0} e^{-25 k} \\ & \frac{1}{2}=e^{-25 k} \\ & \log _{10}\left(\frac{1}{2}\right)=-25 k \log _{10} e \\ & k=0 \cdot 028 \end{aligned}$				

[^0]: $10: 15=10: 15=4: 6=2: 3$

