X100/12/02

NATIONAL TUESDAY, 6 MAY QUALIFICATIONS 1.00 PM - 2.30 PM 2014 MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A – Questions 1–20 (40 marks)

Instructions for completion of Section A are given on Page two.

For this section of the examination you must use an HB pencil.

Section B (30 marks)

- 1 Full credit will be given only where the solution contains appropriate working.
- 2 Answers obtained by readings from scale drawings will not receive any credit.

Read carefully

- 1 Check that the answer sheet provided is for **Mathematics Higher (Section A)**.
- 2 For this section of the examination you must use an **HB pencil** and, where necessary, an eraser.
- Check that the answer sheet you have been given has your name, date of birth, SCN (Scottish Candidate Number) and Centre Name printed on it.
 Do not change any of these details.
- 4 If any of this information is wrong, tell the Invigilator immediately.
- 5 If this information is correct, **print** your name and seat number in the boxes provided.
- 6 The answer to each question is A, B, C or D. Decide what your answer is, then, using your pencil, put a horizontal line in the space provided (see sample question below).
- 7 There is **only one correct** answer to each question.
- 8 Rough working should **not** be done on your answer sheet.
- 9 At the end of the exam, put the **answer sheet for Section A inside the front cover of your answer book**.

Sample Question

A curve has equation $y = x^3 - 4x$.

What is the gradient at the point where x = 2?

A 8
B 1
C 0
D -4

The correct answer is **A**—8. The answer **A** has been clearly marked in **pencil** with a horizontal line (see below).

Changing an answer

If you decide to change your answer, carefully erase your first answer and, using your pencil, fill in the answer you want. The answer below has been changed to D.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

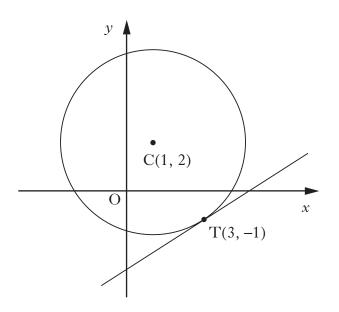
or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:	$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$
	$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

Table of standard derivatives:

f(x)	f'(x)
$\sin ax$ $\cos ax$	$a\cos ax$ - $a\sin ax$

Table of standard integrals:


f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
$\cos ax$	$\frac{1}{a}\sin ax + c$

[Turn over

SECTION A

ALL questions should be attempted.

- **1.** A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n + 1$, with $u_2 = 15$. What is the value of u_4 ?
 - $2\frac{1}{9}$ А
 - $2\frac{1}{3}$ В
 - 3 С
 - D 30
- The diagram shows a circle with centre C(1, 2) and the tangent at T(3, -1). 2.

What is the gradient of this tangent?

- $\frac{1}{4}$ А
- В
- $\frac{2}{3}$ $\frac{3}{2}$ С
- 4 D

- 3. If $\log_4 12 \log_4 x = \log_4 6$, what is the value of x?
 - A 2
 - B 6
 - C 18
 - D 72
- 4. If $3\sin x 4\cos x$ is written in the form $k\cos(x a)$, what are the values of $k\cos a$ and $k\sin a$?

	kcosa	ksin <i>a</i>
А	-3	4
В	3	-4
С	4	-3
D	-4	3

- 5. Find $\int (2x+9)^5 dx$.
 - A $10(2x+9)^4 + c$
 - B $\frac{1}{4}(2x+9)^4 + c$
 - C $10(2x+9)^6 + c$
 - D $\frac{1}{12}(2x+9)^6 + c$

[Turn over

6. Given that
$$\boldsymbol{u} = \begin{pmatrix} -3\\1\\0 \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$, find $2\boldsymbol{u} - 3\boldsymbol{v}$ in component form.
A $\begin{pmatrix} -9\\5\\-6 \end{pmatrix}$
B $\begin{pmatrix} -9\\-1\\-4 \end{pmatrix}$
C $\begin{pmatrix} -3\\-1\\6 \end{pmatrix}$
D $\begin{pmatrix} 11\\-5\\4 \end{pmatrix}$

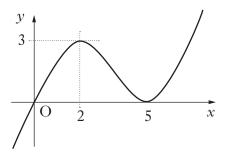
7. A right-angled triangle has sides and angles as shown in the diagram.

What is the value of sin2*a*?

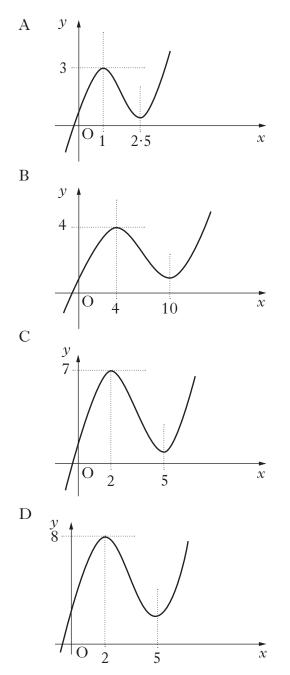
A
$$\frac{8}{17}$$

B $\frac{3}{\sqrt{34}}$
C $\frac{15}{17}$

D
$$\frac{6}{\sqrt{34}}$$


- 8. What is the derivative of $(4 9x^4)^{\frac{1}{2}}$? A $-\frac{9}{2}(4 - 9x^4)^{-\frac{1}{2}}$ B $\frac{1}{2}(4 - 9x^{-4})^{-\frac{1}{2}}$ C $2(4 - 9x^4)^{-\frac{1}{2}}$ D $-18x^3(4 - 9x^4)^{-\frac{1}{2}}$
- 9. $\sin x + \sqrt{3} \cos x \, \text{can be written as } 2 \cos \left(x \frac{\pi}{6} \right).$ The maximum value of $\sin x + \sqrt{3} \cos x$ is 2.

What is the maximum value of $5\sin 2x + 5\sqrt{3}\cos 2x$?


- A 20
- B 10
- C 5
- D 2
- 10. A sequence is defined by the recurrence relation
 u_{n+1} = (k 2)u_n + 5 with u₀ = 3.
 For what values of k does this sequence have a limit as n→∞?
 - A -3 < k < -1
 - B -1 < k < 1
 - C $1 \le k \le 3$
 - D k < 3

[Turn over

11. The diagram shows part of the graph of y = f(x).

Which of the following diagrams could be the graph of y = 2f(x) + 1?

- 12. A function *f*, defined on a suitable domain, is given by $f(x) = \frac{6x}{x^2 + 6x 16}$. What restrictions are there on the domain of *f*?
 - A $x \neq -8$ or $x \neq 2$
 - B $x \neq -4$ or $x \neq 4$
 - C $x \neq 0$
 - D $x \neq 10$ or $x \neq 16$

13. What is the value of
$$\sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{5\pi}{4}\right)$$
?

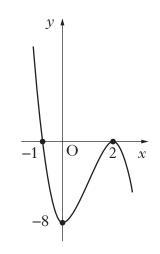
A
$$\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}}$$

B
$$\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}$$

C
$$\frac{1}{2} - \frac{1}{\sqrt{2}}$$

D
$$\frac{1}{2} + \frac{1}{\sqrt{2}}$$

14. The vectors
$$\boldsymbol{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$ are perpendicular.


What is the value of *k*?

$$A \quad \frac{-6}{7}$$
$$B \quad -1$$
$$C \quad 1$$

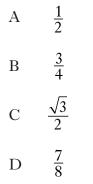
D $\frac{6}{7}$

[Turn over

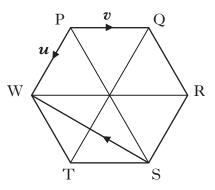
15. The diagram shows a cubic curve passing through (-1, 0), (2, 0) and (0, -8).

What is the equation of the curve?

- A $y = -2(x+1)^2(x+2)$
- B $y = -2(x+1)(x-2)^2$


C
$$y = 4(x+1)(x-2)$$

D
$$y = -8(x+1)(x-2)^2$$


16. The unit vectors **a** and **b** are such that $\mathbf{a} \cdot \mathbf{b} = \frac{2}{3}$. Determine the value of $\mathbf{a} \cdot (\mathbf{a} + 2\mathbf{b})$.

- $A \qquad \frac{2}{3}$ $B \qquad \frac{4}{3}$ $C \qquad \frac{7}{3}$ $D \qquad 3$
- 17. $3x^2 + 12x + 17$ is expressed in the form $3(x + p)^2 + q$. What is the value of q?
 - A 1
 - B 5
 - C 17
 - D –19

18. What is the value of $1 - 2\sin^2 15^\circ$?

19. The diagram shows a regular hexagon PQRSTW. \overrightarrow{PW} and \overrightarrow{PQ} represent vectors \boldsymbol{u} and \boldsymbol{v} respectively.

What is \overrightarrow{SW} in terms of \boldsymbol{u} and \boldsymbol{v} ?

A
$$-\boldsymbol{u} - 2\boldsymbol{v}$$

- В –*u v*
- C *u v*
- D $\boldsymbol{u} + 2\boldsymbol{v}$

20. Evaluate
$$2 - \log_5 \frac{1}{25}$$
.

- A -3
- B 0
- C $\frac{3}{2}$
- D 4

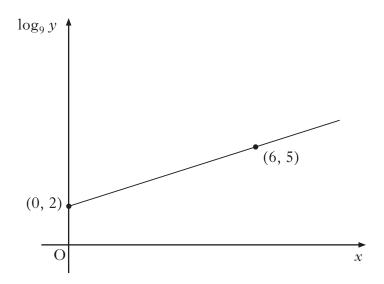
[END OF SECTION A]

SECTION B

ALL questions should be attempted.

21. A curve has equation $y = 3x^2 - x^3$.

	(<i>a</i>)	Find the coordinates of the stationary points on this curve and determine their nature.	6
	(b)	State the coordinates of the points where the curve meets the coordinate axes and sketch the curve.	2
22.	For	the polynomial $6x^3 + 7x^2 + ax + b$,	
		 x + 1 is a factor 72 is the remainder when it is divided by x - 2. 	
	(<i>a</i>)	Determine the values of <i>a</i> and <i>b</i> .	4
	(<i>b</i>)	Hence factorise the polynomial completely.	3
23.	(<i>a</i>)	Find P and Q, the points of intersection of the line $y = 3x - 5$ and the circle C_1 with equation $x^2 + y^2 + 2x - 4y - 15 = 0$.	4
	(<i>b</i>)	T is the centre of C_1 .	
		Show that PT and QT are perpendicular.	3
	(<i>c</i>)	A second circle C_2 passes through P, Q and T.	
		Find the equation of C_2 .	3


24. Two variables, *x* and *y*, are related by the equation

Marks

5

 $y = ka^x$.

When $\log_9 y$ is plotted against x, a straight line passing through the points (0, 2) and (6, 5) is obtained, as shown in the diagram.

Find the values of *k* and *a*.

[END OF SECTION B]

[END OF QUESTION PAPER]

X100/12/03

NATIONAL TUESDAY, 6 MAY QUALIFICATIONS 2.50 PM - 4.00 PM 2014 MATHEMATICS HIGHER Paper 2

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $\mathbf{a}.\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

~

Trigonometric formulae:	$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$
	$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

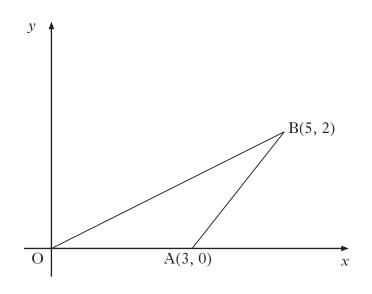
Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

ALL questions should be attempted.


4

2

2

4

1. A(3, 0), B(5, 2) and the origin are the vertices of a triangle as shown in the diagram.

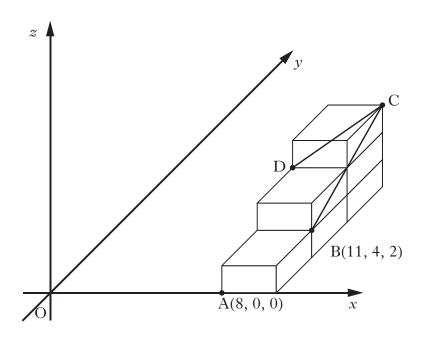
(a) Obtain the equation of the perpendicular bisector of AB.

<i>(b)</i>	The median from A has equation $y + 2x = 6$.	
	Find T, the point of intersection of this median and the perpendicular bisector of AB.	2

- (c) Calculate the angle that AT makes with the positive direction of the *x*-axis.
- 2. A curve has equation $y = x^4 2x^3 + 5$.

Find the equation of the tangent to this curve at the point where x = 2. 4

3. Functions *f* and *g* are defined on suitable domains by


$$f(x) = x(x-1) + q$$
 and $g(x) = x + 3$.

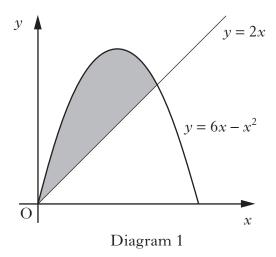
- (a) Find an expression for f(g(x)).
- (b) Hence, find the value of q such that the equation f(g(x)) = 0 has equal roots.

[Turn over

5

4. Six identical cuboids are placed with their edges parallel to the coordinate axes as shown in the diagram.

A and B are the points (8, 0, 0) and (11, 4, 2) respectively.


<i>(a)</i>	State the coordinates of C and D.	2
<i>(b)</i>	Determine the components of \overrightarrow{CB} and \overrightarrow{CD} .	2
(c)	Find the size of the angle BCD.	5

5. Given that
$$\int_{4}^{t} (3x+4)^{-\frac{1}{2}} dx = 2$$
, find the value of *t*.

6. Solve the equation

$$\sin x - 2\cos 2x = 1$$
 for $0 \le x < 2\pi$. 5

- Land enclosed between a path and a railway line is being developed for housing. This land is represented by the shaded area shown in Diagram 1.
 - The path is represented by a parabola with equation $y = 6x x^2$.
 - The railway is represented by a line with equation y = 2x.
 - One square unit in the diagram represents 300 m² of land.

- (a) Calculate the area of land being developed.
- (b) A road is built parallel to the railway line and is a tangent to the path as shown in Diagram 2.

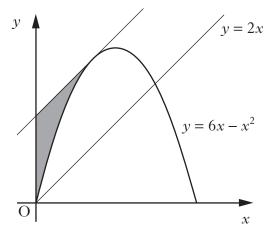


Diagram 2

It is decided that the land, represented by the shaded area in Diagram 2, will become a car park.

Calculate the area of the car park.

5

5

8. Given that the equation

$$x^2 + y^2 - 2px - 4py + 3p + 2 = 0$$

represents a circle, determine the range of values of *p*.

- 9. Acceleration is defined as the rate of change of velocity. An object is travelling in a straight line. The velocity, v m/s, of this object, t seconds after the start of the motion, is given by $v(t) = 8\cos(2t - \frac{\pi}{2})$.
 - (a) Find a formula for a(t), the acceleration of this object, t seconds after the start of the motion.
 - (b) Determine whether the velocity of the object is increasing or decreasing when t = 10.
 - (c) Velocity is defined as the rate of change of displacement.
 Determine a formula for s(t), the displacement of the object, given that s(t) = 4 when t = 0.

[END OF QUESTION PAPER]

Marks

5

3

2

3

2014 Mathematics

Higher

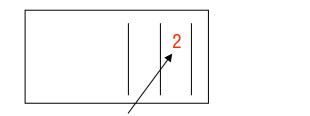
Finalised Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.


General Comments

These marking instructions are for use with the 2014 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 Award one mark for each •. There are no half marks.
- 3 The mark awarded for each part of a question should be entered in the outer right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, as a whole number, should be written.

Marks in this column whole numbers only

2/3 •

Do not record marks on scripts in this manner.

- 4 Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, ie a completely empty space, then NR should be written in the outer margin.
- 5 IT IS ESSENTIAL that every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.
- 6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (↓), in the margin, at the earlier stages.
- 7 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 8 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.

A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, ie a cross is only used where a mark is not awarded.

_X

A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of follow through from an error.

×

A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been eased.

A tilde should be used to indicate a minor error which is not being penalised, eg bad form.

This should be used where a candidate is given the benefit of the doubt.

A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and are essential for the later stages of SQA procedures.

The examples below illustrate the use of the marking symbols .

 \bullet^1 \checkmark \bullet^2 \times \bullet^3 \checkmark \bullet^4 \land \bullet^5 \checkmark

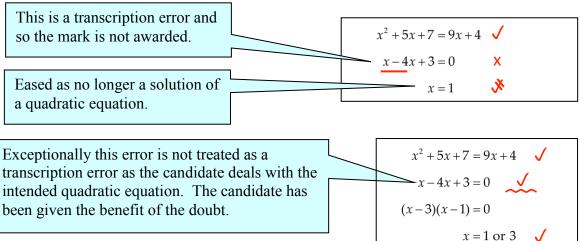
Example 1

$$y = x^3 - 6x^2$$

 $\frac{dy}{dx} = 3x^2 - 12$
 $3x^2 - 12 = 0$
 $x = 2$
 $y = -16$

Example 2 A(4,4,0), B(2,2,6), C(2,2,0) $\overrightarrow{AB} = \underline{\mathbf{b}} + \underline{\mathbf{a}} = \begin{pmatrix} 6\\ 6\\ 6 \end{pmatrix} \times \mathbf{e}^1$ $\overrightarrow{AC} = \begin{pmatrix} 6\\ 6\\ 0 \end{pmatrix} \times \mathbf{e}^2$

Example 4


Example 3

 $3\sin x - 5\cos x$ $k\sin x \cos a - \cos x \sin a \checkmark \bullet^{1}$ $k\cos a = 3, \ k\sin a = 5 \checkmark \bullet^{2}$

Since the remainder is 0, x - 4 must be a factor. $\checkmark \bullet^3$ $(x^2 - x - 2) \checkmark \bullet^4$ $(x - 4)(x + 1)(x - 2) \checkmark \bullet^5$

$$(x-4)(x+1)(x-2) \checkmark \bullet^{-1}$$

 $x = 4 \text{ or } x = -1 \text{ or } x = 2 \checkmark \bullet^{-6}$

- 10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.
- 11 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, eg

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

Illustrative Scheme: \bullet^5 x = 2, x = -4Cross marked: \bullet^5 x = 2, y = 5 \bullet^6 y = 5, y = -7 \bullet^6 x = -4, y = -7

Markers should choose whichever method benefits the candidate, but not a combination of both.

13 In final answers, numerical values should be simplified as far as possible.

Examples:	$\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ should be simplified to 43
	$\frac{15}{0.3}$ should be simplified to 50	$\frac{\frac{4}{5}}{3}$ should be simplified to $\frac{4}{15}$
	$\sqrt{64}$ must be simplified to 8	The square root of perfect squares up to and including 100 must be known.

- 14 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide in marking similar non-routine candidate responses.
- 15 Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form;
 - Repeated error within a question, but not between questions or papers.

- 16 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error.
- 17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- 18 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- 19 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.

Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

- 20 It is of great importance that the utmost care should be exercised in totalling the marks. A tried and tested procedure is as follows:
 - Step 1 Manually calculate the total from the candidate's script.
 - Step 2 Check this total using the grid issued with these marking instructions.
 - Step 3 Electronically enter the marks and obtain a total, which should now be compared to the manual total.

This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

21 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (ie Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.

Paper 1 Section A

	Question	<u>Answer</u>
	1	C
	2	В
	3	A
	4	D
	5	D
	6	А
	7	С
	8	D
	9	В
	10	С
	11	С
	12	А
	13	В
	14	D
	15	В
	16	С
	17	В
	18	С
	19	А
	20	D
<u>Summary</u>	А	4
	В	5
	С	6
	D	5

Paper 1- Section B

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark
21	а			
• ¹	ss k	now to differentiate and one term correct	• = 6 <i>x</i> or = 3 x^2	
• ²	ss t	he other term correct and set derivative to 0	• ² $6x - 3x^2 = 0$ stated explicitly	
• ³		solve $\frac{dy}{dx} = 0$ evaluate y coordinates	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
• ⁵			• $y = 0$ $y = 1$ • $y = 0$ $y = 0$ • $y = $	
•		ustify nature of stationary points		
• ⁶	ic i	nterpretation	• ⁶ min. at $(0,0)$ and max. at $(2,4)$	6
3.	For can X valu	$3x^2 - 6x = 0$ for \bullet^2 . didates using a nature table, the minimum respectively of $\frac{dy}{dx}$ or expression $6x - 3x^2$; sign	is and zeroes; shape. $\frac{\frac{dy}{dx}}{dx} = 0 + 0 - \frac{1}{2}$	×
			solve $\frac{dy}{dx} = 0$ incorrectly, \bullet^4 may be awarded	
		-	f a nature table has been used, but may be av	warded
		and idates have used the 2^{nd} derivative.	4	5
	and \bullet^6	-	• ⁴ may be awarded as follow through marks sed, but may be awarded where candidates I	
6.	At \bullet^6 st	age accept min at $x=0$ and max at $x=2$.		
7.	Candida	ates who find the X-coordinates of the SPs co	prrectly but correctly process only one of the	ese to
1.		ates who find the x coordinates of the SFS of	sheetry but confectly process only one of the	

Commonly Observed Responses:

Commonly Observed Responses:	
Candidate A	
$\frac{d^2 y}{dx^2} = 6 - 6 x$	
at $x = 0$, $\frac{d^2 y}{dx^2} > 0$, at $x = 2$, $\frac{d^2 y}{dx^2} < 0$	•5 🗸
	\bullet^6
hence minimum SP at $x = 0$, maximum SP at $x =$	= 2
Candidate B	
$\frac{dy}{dx} = 6x - 3x^2 = 0 \bullet^1 \checkmark \bullet^2 \checkmark$	
3x(3-x) = 0	
3x(3-x) = 0 x = 0, x = 3 y = 0, y = 0 • ³ x • ⁴ ×	
Case (i)	$\checkmark \begin{array}{c} \text{Case (ii)} \\ x \rightarrow 0 \rightarrow 3 \rightarrow \\ \hline \frac{dy}{dx} - 0 ? ? + \end{array} \bullet^{5} \times \bullet^{6} \times \end{array}$
$\frac{d^2 y}{dx^2} = 6 - 6X$	$\frac{X}{dx} \rightarrow 0 \rightarrow 3 \rightarrow$
$d^2 \chi$	$\frac{dy}{dx} - 0$? ? +
$x=0 \Rightarrow \frac{d^2 y}{dx^2} > 0 \Rightarrow \text{Minimum SP}$ • ⁵	
$x=3 \Rightarrow \frac{d^2 y}{dx^2} < 0 \Rightarrow \text{Maximum SP}$ • ⁶	? inconsistent. Different signs for $6x-3x^2$ or $3x(3-x)$
21 b	
\bullet^7 pd find intercepts	• ⁷ $3x^2 - x^3 = 0$ and $(3,0)$ or $x = 3$;
	(0,0) [may appear in part a]
• ⁸ ic sketch	• ⁸ sketch 2
Notes:	
8. • ⁷ accept $3x^2 - x^3 = 0$ and correctly annotated d	liagram with 0, 3 and no other intercepts marked on sketch.

9. The minimum required for \bullet^8 is a cubic curve, consistent with the SPs found in part (a) and appropriate number of *x* intercepts appearing on their sketch. It must be possible to determine the coordinates of the SPs from the sketch.

The following are acceptable for \bullet^8 (2, 4) 4 \geq \geq \geq 3 2 C Do not accept the following for \bullet^8 (2, 4) \rightarrow \rightarrow \geq 3 0 (2, 4) $\overrightarrow{3}$ 0

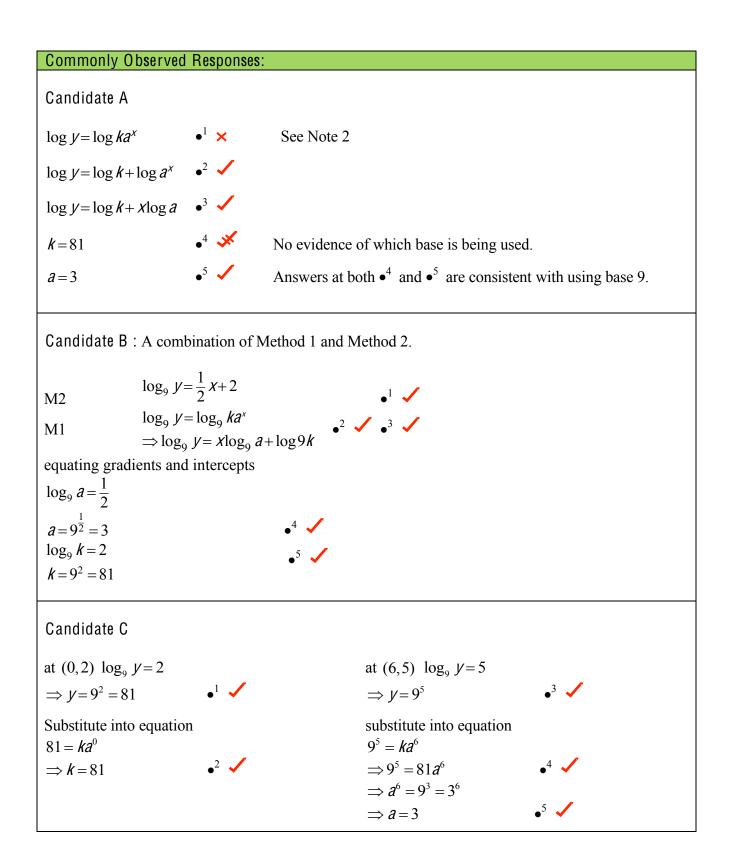
Question	Generic Scheme	Illustrative Scheme	Max Mark
 •² ss know •³ pd proc 	w to use $X = -1$ and obtain an equation w to use $X = 2$ and obtain an equation ess equations to find one value the other value	• ¹ $6(-1)^3 + 7(-1)^2 + a(-1) + b = 0$ • ² $6(2)^3 + 7(2)^2 + a(2) + b = 72$ • ³ $a = -1$ or $b = -2$ • ⁴ $b = -2$ or $a = -1$ Alternative Method for • ¹ and • ² • ¹ $-1 \begin{bmatrix} 6 & 7 & a & b \\ -6 & -1 & -a+1 \\ 6 & 1 & a-1 & b-a+1=0 \end{bmatrix}$ • ² $2 \begin{bmatrix} 6 & 7 & a & b \\ 12 & 38 & 2a+76 \\ 6 & 19 & a+38 & 2a+b+76 = 72 \end{bmatrix}$	4
equations	s are such that no solution exists, then \bullet	igh for the possible award of \bullet^4 . However, if	
Commonly	Observed Responses:		
Candidate A • ¹ × 1 6 6	6 7 <i>a b</i> 6 13 <i>a</i> +13		
\bullet^2 \checkmark repeating repeating -2 6 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	get $a = -35$, $b = 22$ • ³ • • • • •		
Leading to, 1	in part (b), $\Rightarrow 6x^3 + 7x^2 - 35x + 22 = (x + 5x^2)^2 + 6x^2 + 7x^2 - 35x + 22 = (x + 5x^2)^2 + 6x^2 + 7x^2 + 2x^2 + 2x^$	$-1)(0x^{2}+13x-22)$	

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark
22	b			
•5	SS	substitute for <i>a</i> and <i>b</i> and know to divide by $X+1$	• $(6x^3 + 7x^2 - x - 2) \div (x+1)$ Stated or implied by • ⁶	
•6	pd	obtain quadratic factor	• ⁶ $(x+1)(6x^2+x-2)$	
•7	pd	complete factorisation	• ⁷ $(x+1)(3x+2)(2x-1)$	3
Not	es:			
 For candidates who substitute a = -1 into the correct quotient from part (a), •⁵, •⁶ and •⁷ are available. Candidates who use incorrect values obtained in part (a) may gain •⁵, •⁶ and •⁷ Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate that b²-4ac<0 to gain •⁷. Do not penalise the inclusion of '=0' or for solving for <i>x</i>. Candidates who use values, ex nihilo, for <i>a</i> and <i>b</i> can gain •⁵, if division is correct, but •⁶ and •⁷ are only available if (x+1) is a factor of the resulting expression. 				
Cor	nmonly	Observed Responses:		
	ndidate		Candidate C	
22a	no solu	tion $b = -5$ ex nihilo	22a no solution 22b $a=2, b=3$ ex nihilo	
(<i>X</i> +			$(6x^{3} + 7x^{2} + 2x + 3) \div (x + 1) \qquad \bullet^{5}$ $-1 \qquad 6 \qquad 7 \qquad 2 \qquad 3 \qquad -6 \qquad -1 \qquad -1 \qquad \\ \hline 6 \qquad 1 \qquad 1 \qquad 2 \qquad \\ \Rightarrow (x + 1) \text{is not a factor} \\ \bullet^{6} \text{ and } \bullet^{7} \text{ are not available}$	*
22a	ndidate no solu a = 4, k			
-	$x^{2} + 7x^{2} + 6$ -1 6 -1 6 -1)(6x ² -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		-72 = -71 does not factorise $\bullet^7 \checkmark$		

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark
23	а			
•1	SS	substitute $3x - 5$	• ¹ $x^{2} + (3x - 5)^{2} + 2x - 4(3x - 5) - 15 = 0$	
• ²	pd	express in standard quadratic form	• ² $10x^2 - 40x + 30 = 0$	
• ³	pd pd	find <i>X</i> -coordinates	• ³ $x=1$ $x=3$ • ⁴ $y=-2$ $y=4$	4
•	1	find y-coordinates	• $y = -2$; $y = 4$ • 3 • 4	4
Not		1 2	2	
1.		sust appear at \bullet^1 or \bullet^2 for matrix		
2.	If $x = \frac{1}{3}$	$(y+5)$ is substituted at \bullet^1	then $10y^2 - 20y - 80 = 0$ is obtained at \bullet^2 .	
3.	Special	Case: In cases where $x = 1$	1 and $x=3$ do not appear as a result of \bullet^1 and \bullet^2 , but are	
			line to obtain the y values, if the candidate then checks the second sec	that
	both po	ints lie on the circle, $\frac{3}{4}$ matrix	arks are awarded. If, in addition, the candidate makes a	
		a <i>t</i>	an only cut a circle in, at most, 2 points, then $\frac{4}{4}$ marks as	re
	awarde	d. Otherwise, $\frac{0}{4}$ marks.		
4.	\bullet^3 and \bullet	⁴ are not available for any a	attempt to solve a quadratic equation of the form $ax^2 + bx$	'= C
Cor	nmonly	Observed Responses:		
	ndidate		1	
	+(3x-5) $c^2-40x-5$	$x^{2}+2x-4(3x-5)-15=0$	e^2 V	
	2 and <i>y</i>	=1	• • • •	
23	b ss	state centre	• ⁵ (-1,2)	
6	55		• ⁶ $m = -2, m = \frac{1}{2}$	
• ⁶	pd	calculate gradients		
•′	ic	communicate result	• ⁷ demonstrates 1	
			$m_1 \times m_2 = -2 \times \frac{1}{2} = -1$	
			\Rightarrow PT is perpendicular to QT [or other appropriate statement]	
			Alternative Method	
• ⁵	SS	state centre	• ⁵ (-1,2)	
• ⁶	pd	calculate vectors	• ⁶ eg $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$	
•7	ic	communicate result	• ⁷ $\binom{-2}{4} \cdot \binom{-4}{-2} = -2 \times -4 + 4 \times -2 = 0$	
			\Rightarrow PT is perpendicular to QT	
			[or other appropriate statement]	3

Notes:

- 4. Other valid strategies:
 - a Converse of Pythagoras' Theorem:


•⁶ process lengths, $PT = QT = \sqrt{20}$, $PQ = \sqrt{40}$

- •⁷ apply converse and communicate result clearly.
- b Cosine Rule:
 - •⁶ process lengths, •⁷ apply cosine rule to obtain angle 90° and communicate result clearly.

Commonly Observed Responses:						
Candidate B	Candidate C					
$T(-1,2) \qquad \bullet^5 \checkmark$	$T(-1,2)$ • ⁵ \checkmark					
$m=\frac{1}{2}, m=-2$ • ⁶	$m_1 = \frac{1}{2}, m_2 = -2$ • ⁶					
$m_1 \times m_2 = -1$ $\bullet^7 \land$	$m_1 \times m_2 = -1$ $\bullet^7 \checkmark$					
No link between required condition and gradients found.	Required condition is linked to gradients found.					
23 C						
\bullet^8 ss knows to find and states centre	• ⁸ centre $(2, 1)$					
\bullet^9 pd calculate radius	• ⁹ radius = $\sqrt{10}$					
• ¹⁰ ic state equation of circle	• ¹⁰ $(x-2)^2 + (y-1)^2 = 10$ 3					
• ⁸ ss substitute points into general equation of circle	Alternative Method $x^{2} + y^{2} + 2gx + 2fy + c = 0$ • ⁸ 25 + 6g + 8f + c = 0 5 + 2g - 4f + c = 0 5 - 2g + 4f + c = 0					
• ⁹ pd find f or g or c	• $f = -1$, or $g = -2$, or $c = -5$					
• ¹⁰ ic state values of f , g and c	• ¹⁰ $f = -1, g = -2, c = -5$					
Notes:						

- 5. $(\sqrt{10})^2$ must be simplified to gain \bullet^{10}
- 6. For candidates who find P and Q correctly in part (a), award \bullet^8 if centre (2,1) appears without working.
- 7. For the mid-point of PQ being (2,1), •⁸ is available unless subsequent working indicates that this is not the intended centre.
- 8. •⁹ is only available as a result of PQ being a diameter, or using a valid strategy to find the centre eg midpoint of PQ or point of intersection of the perpendicular bisectors of PT and TQ. •¹⁰ is still available.
- 9. Where an incorrect centre or an incorrect radius appear ex nihilo \bullet^{10} is not available.

Que	stion	Generic Scheme		Illustrative Scheme	
24					
				Method 1	
\bullet^1	ss tal	ke log ₉ of both sides of the equation	\bullet^1	$\log_9 \mathcal{Y} = \log_9 ka^x$	
• ²	pd ap	pply laws of logarithms	• ²	$\log_9 \mathcal{Y} = \log_9 \mathcal{K} + \log_9 \mathcal{A}^{x}$	
• ³	pd ap	oply laws of logarithms	• ³	$\log_9 \mathcal{Y} = \log_9 \mathcal{K} + \mathcal{X}\log_9 \mathcal{A}$	
• ⁴	pd fi	nd <i>k</i>	• ⁴	$\log_9 k = 2, k = 81$ or $k = 9^2 = 81$	
• ⁵	pd fi	nd a	• ⁵	$\log_9 a = \frac{1}{2}, a = 3$ or $a = 9^{\frac{1}{2}} = 3$	5
				Method 2	
\bullet^1	ss ki	now to use equation of the line	\bullet^1	$\log_9 y = \frac{1}{2}x + 2$	
• ²	pd w	rite in exponential form	• ²	$y = 9^{\frac{1}{2}x+2}$	
•3	pd ap	pply laws of indices	• ³	$y = 9^{\frac{1}{2}x+2}$ $y = 9^{\frac{1}{2}x}9^{2}$	
•4	pd fi	nd <i>k</i>	• ⁴	<i>k</i> = 81	
• ⁵	pd fi	nd a	• ⁵	<i>a=</i> 3	
Not	es:				•
1.	Can	didates who start with $\bullet^3 \log_9 y = \log_9 y$	$g_{9} k + \lambda$	$x\log_9 a$ also gain \bullet^1 and \bullet^2 .	
2.		Aethod 1, base 9 must appear by \bullet^4 st			
3.	For	k=81 and $a=3$ with spurious or negative states $k=81$ and $k=81$ with spurious or negative states $k=81$ with spurious states k	o worki	ng, \bullet^4 and \bullet^5 are not available.	

Paper 2

	stion	Generic Scheme		Illustrative Scheme	Max Mark
1	а				
•1	SS	find gradient of AB	•1	$m_{AB} = 1$	
• ²	pd	find perpendicular gradient	•2	$m_{perp} = -1$ stated or implied by \bullet^4	
•3	pd	find midpoint of AB	•3	(4,1) stated or implied by \bullet^4	
•4	pd	obtain equation	•4	y - 1 = -1(x - 4)	4
Note	es:				
		y available as a consequence of usir lient must appear in simplified form		pendicular gradient and a midpoint. tage for \bullet^4 to be awarded.	
Com	nmonly	Observed Responses:			
Can	didate	Α			
		• ¹ X			
m _{per}	, =1	•2 💉			
		• ³ ✓			
<i>y</i> –1	=1(X-	$4) \implies y = x - 3 \bullet^4 \checkmark$			
	ling to p	part (b)			
	$\begin{array}{l} x = -3 \\ 2x = 6 \end{array}$	•5 💉			
(3,0)	•6 🖌			
\bullet^7 ar	nd \bullet^8 are	e not available as $A = T = (3,0)$			

Question	Generic Scheme			Illustrative Scheme	Max Mark
$\begin{array}{c c} 1 & b \\ \bullet^5 & ss \end{array}$	know to solve simultaneously		•5	y+2x=6 y+x=5	_
• ⁶ pd	solve correctly for <i>X</i> and <i>Y</i>		• ⁶	x = 1, y = 4	2
CommonI	y Observed Responses:				
Candidate	e B				
Part (a) y	$-1 = -1(x-4)$ $\bullet^4 \checkmark$				
-	x = -x + 3 error $x + 2x = 6$ and $y + x = 3$ $\bullet^5 \checkmark$				
x=3, y=0		rrect strates	gy used	, pd mark not available	
1 C					
• ⁷ ss	know and use $m = \tan \theta$		•7	$\tan\theta = -2$	
• ⁸ pd	calculate angle		• ⁸	116·6°	2
			a	ccept 117° or 2.03 radians	
Commonl	y Observed Responses:				
Candidate	e C	Candida	te D		
$m_{\rm AT} = -\frac{1}{2}$					
base angle	7	$M_{\rm AT} = 2$		• ⁷ X	
	$=90+26\cdot 6=116\cdot 6^{\circ}$ • ⁸ X	angle = t	$an^{-1}(2)$	$=63\cdot4^{\circ}$ \bullet^{8} \checkmark	
Candidate	e E:	1			
Part (a)		Part (b)			
$m_{\rm AB} = \frac{2-1}{5-1}$	$\frac{0}{3} = \frac{2}{8} = \frac{1}{4} \bullet^1 X$	y + 4x - x $y + 2x + y$	5 = 0 6 = 0	• ⁵ \times \Rightarrow $y+2x=-6$ y+4x=-5	• ⁶ X
$m_{\rm perp} = -4$	• ² ×	$\Rightarrow 2x = 1$	$, x = \frac{1}{2}$	-, <i>y</i> =−7	
Midpoint of $y-1 = -40$ y+4x-5	of AB (4, 1) $\bullet^3 \checkmark$ (x-1) $\bullet^4 \checkmark$	the gi simult equati	ven equ aneous on has	mark. The correct strategy is to Lation with the equation from $1y. \bullet^5$ is not awarded as the given of been used.	part (a) ven
		rearra	nged in	obtained at stage \bullet^4 , has been correctly in part (b). The next re not awarded.	

Question		Generic Scheme		Illustrative Scheme	Max Mark	
2						
• ¹	SS	know to and differentiate	\bullet^1	$4x^3-6x^2$		
• ²	ic	find gradient	• ²	8		
•3	pd	find y-coordinate	• ³	5		
• ⁴	ic	state equation of tangent	•4	y-5=8(x-2)	4	
Co	mmonly	y Observed Responses:				
	ndidate	· · · · · · · · · · · · · · · · · · ·				
• ¹	• ²	✓ • ³ ✓				
usi	ng <i>y</i> = <i>l</i>	MX+C				
<i>X</i> =	x=2, y=5, m=8					
\Rightarrow 5 = 8×2+ <i>c</i>						
\Rightarrow	$5=8\times 2$	$\mathbf{L} + \mathbf{C}$				
	$5 = 8 \times 2$ $c = -11$					

Question	Generic	Scheme	Illustrative Scheme		Max Mark
$\begin{array}{c c} 3 & a \\ \bullet^1 & ic \\ \bullet^2 & pd \end{array}$	interpret notatio a correct expres		• $f(x+3)$ stated or implied • $(x+3)(x+2)+q$ 0R $=(x+3)^2-(x+3)+q$ or equivalent	d by \bullet^2	2
Notes:	1				
			<i>X</i> thus, treat $x+3(x+3-1)+q$ as	bad form.	
Commonly	/ Observed Respon	Ses:			
Candidate	Α		Candidate B		
	x+3(x+3-1)+q $x^2+5x+6+q$			• ¹ \checkmark • ² \times	
Candidate	C		Candidate D		
=(X	$x+3(x+3-1)+q +3)^2-x+3+q +5x+6+q=0$	• ¹ \checkmark • ² \checkmark • ³ \checkmark	f(g(x)) = (x+3)(x+3-1)+q = (x+3) ² - x+3+q x ² + 5x+12+q=0	• ¹ ✓ • • ³ X	2 🗸
Candidate part (a)	E: using $g(f(x))$		part (b)		
	g(x(x-1)+q) x(x-1)+q+3	• ¹ X • ²	$x^{2} - x + q + 3 = 0$ $b^{2} - 4ac = (-1)^{2} - 4 \times 1 \times (q + 3)$ 1 - 4q - 12 = 0 $q = -\frac{11}{4}$	•3 × •4 × •5 × •6 ×	(eased)

	stion	Generic Scheme		Illustrative Scheme	Max Mark
3	b				
		Method 1		Method 1	
• ³	pd	write in standard quadratic form	•3	$x^2 + 5x + 6 + q = 0$	
• ⁴	ic	use discriminant	•4	$b^2 - 4ac = 5^2 - 4 \times 1 \times (6 + q)$	
• ⁵	pd	simplify and equate to zero	• ⁵	\Rightarrow 25-24-4 q =0	
• ⁶	pd	find value of <i>q</i>	•6	$q = \frac{1}{4}$	4
		Method 2		Method 2	
•3	pd	write in standard quadratic form	•3	$x^2 + 5x + 6 + q = 0$	
• ⁴	ic	complete the square	•4	$\left(x + \frac{5}{2}\right)^2 - \frac{25}{4} + 6 + q = 0$	
• ⁵	pd	equate to zero	• ⁵	$-\frac{25}{4}+6+q=0$	
• ⁶	pd	find value of <i>q</i>	•6	$q = \frac{1}{4}$	
		Method 3		Method 3	
• ³	pd	write in standard quadratic form	•3	$f(g(x)) = x^2 + 5x + 6 + q = 0$	
• ⁴	ic	geometric interpretation	•4	equal roots so touches <i>X</i> -axis at SP	
• ⁵	pd	differentiates to obtain X	•5	$\Rightarrow \frac{dy}{dx} = 2x + 5 = 0$	
•6	pd	find value of <i>q</i>	•6	$x = -\frac{5}{2}$ $\frac{25}{4} - \frac{25}{2} + 6 + q = 0$ $q = \frac{1}{4}$	
Not	es:				
3. I 4. (n Metl Candio	penalise the omission of $=0$ at \bullet^3 . nod 1 $a=1$, $b=5$, $c=6+q$ is sufficie dates who assume $=0$ and follow th ds 1 and 2 $=0$ must appear at \bullet^4 or	rough	to a correct value of q , \bullet^6 is still available	le. In

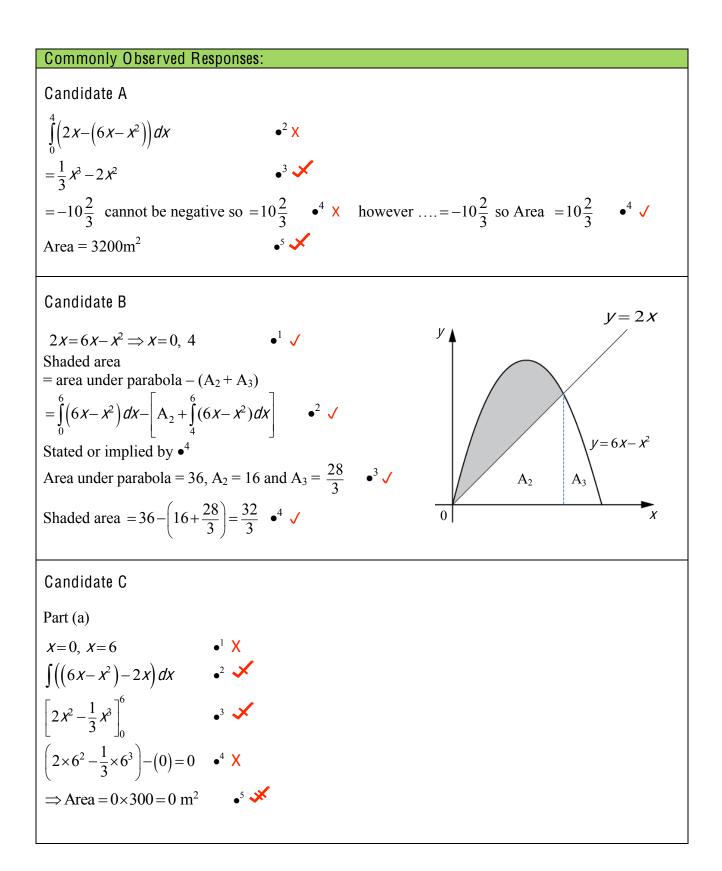
5. If the expression obtained at \bullet^3 is not a quadratic then \bullet^3 , \bullet^4 , \bullet^5 and \bullet^6 are not available.

Qu	estion	Generic Scheme		Illustrative Scheme	Max Mark
	-	ut this question treat coordinates writte	n as c	components, and vice versa, as	
for 4	m. a				
•1	pd	states coordinates of C	•1	C(11,12,6)	
• ²	pd	states coordinates of D	• ²	D(8,8,4)	2
No	tes:				
1.	Accept	$x = 11$, $y = 12$ and $z = 6$ for \bullet^1 and $x = 8$,	<i>y</i> =8	and $Z=4$ for \bullet^2 .	
2.	For car	ndidates who write the coordinates as Carte	esian	triples and omit brackets in both	cases, \bullet^2
4	is not a	available.			
4 ● ³	pd	finds \overrightarrow{CB}		(0)	
	1		•3	-8	
				(-4)	
•4	pd	finds $\overrightarrow{\text{CD}}$		$\left(-3\right)$	2
			•4	$\begin{vmatrix} -4 \\ -2 \end{vmatrix}$	
No	tes:			(2)	
3.	For car	ndidates who find both $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{DC}}$, only	\bullet^4 is a	vailable (repeated error).	
4		· •			
	C		•5	DÔD CB.CD	
•5	SS	know to use scalar product applied to the correct angle	•	$\cos \hat{BCD} = \frac{CB.CD}{ \overline{CB} \overline{CD} }$	
				stated or implied by \bullet^9	
•6	pd	find scalar product	•6	40	
•7	pd pd	find $ \overrightarrow{CB} $	•7	$\sqrt{80}$	
•8	pd	find $ \overrightarrow{CD} $	•8	$\sqrt{29}$	
•9	pd	find angle	•9	33.9°	5
No	tes:				
		t available for candidates who choose to ev		e an incorrect angle.	
		pt 33.8 to 34 degrees or 0.59 to 0.6 radians idates do not attempt \bullet^9 , then \bullet^5 is only ava		if the formula quested relates to th	
0.		induces do not attempt \bullet , then \bullet is only avang in the question.	nable	If the formula quoted relates to tr	le
	\bullet^9 is or	ly available as a result of using a valid stra			
8.	\bullet^5 is no	t available for candidates who write $\cos\theta$ =	$=\frac{2}{\sqrt{80}}$	$\frac{40}{\times\sqrt{29}}$. Some reference to the lab	elling of
		gram must be made within their solution to	VOU.	··· \ =>	
	the cor	rect angle.			

Commonly Observed Responses:	
Candidate A: Cosine Rule	Candidate B
$\cos \hat{BCD} = \frac{CB^2 + CD^2 - BD^2}{2 \times CB \times CD} \qquad \bullet^5 \checkmark$	$\cos \hat{BCD} = \frac{\overrightarrow{BC.CD}}{ \overrightarrow{BC} \times \overrightarrow{CD} } \qquad \bullet^{5} \times$
$CB = \sqrt{80}, CD = \sqrt{29}, BD = \sqrt{29} \bullet^6 \checkmark \bullet^7 \checkmark \bullet^8$	
$33.9^{\circ} \text{ or } 0.59 \text{ radians}$	$\overrightarrow{BC.CD} = -40$ $\bullet^6 \checkmark$ $ \overrightarrow{BC} = \sqrt{80}$, $ \overrightarrow{CD} = \sqrt{29}$ $\bullet^7 \checkmark \bullet^8 \checkmark$ 146·1° or 2·55 radians $\bullet^9 \checkmark$
	146·1° or 2·55 radians $\bullet^9 \checkmark$
Candidate C	Candidate D
$\cos \hat{BOD} = \frac{\overrightarrow{OB.OD}}{ \overrightarrow{OB} \times \overrightarrow{OD} } \qquad \qquad \bullet^{5} X$	$\cos C \hat{B} D = \frac{\overline{BC}.\overline{BD}}{\left \overline{BC}\right \times \left \overline{BD}\right } \qquad \qquad \bullet^{5} X$
$\overrightarrow{OB.OD} = 128 \qquad \qquad \bullet^{6} \checkmark$ $\overrightarrow{OB} = \sqrt{141}, \overrightarrow{OD} = 12 \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$	$\overrightarrow{BC}.\overrightarrow{BD} = 40 \qquad \qquad \bullet^{6} \checkmark$ $\left \overrightarrow{BC}\right = \sqrt{80} , \left \overrightarrow{BD}\right = \sqrt{29} \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$
$\overline{OB} = \sqrt{141}$, $\overline{OD} = 12$ $\bullet^7 \checkmark \bullet^8 \checkmark$	$\left \overrightarrow{\mathrm{BC}} \right = \sqrt{80} \ , \ \left \overrightarrow{\mathrm{BD}} \right = \sqrt{29} \qquad \mathbf{\bullet}^7 \checkmark \mathbf{\bullet}^8 \checkmark$
26·1° or 0·46 radians $\bullet^9 \checkmark$	33.9° or 0.59 radians $\bullet^9 \checkmark$
Candidate E	Candidate F
$\cos B\hat{O}C = \frac{\overrightarrow{OB.OC}}{ \overrightarrow{OB} \times \overrightarrow{OC} } \qquad \bullet^{5} X$	$\cos B\hat{C}D = \frac{\overline{BC.DC}}{\left \overline{BC}\right \times \left \overline{DC}\right } \qquad \bullet^{5} \checkmark$
$\overrightarrow{OB.OC} = 181 \qquad \bullet^{6} \checkmark$ $\overrightarrow{OB} = \sqrt{141}, \overrightarrow{OC} = \sqrt{301} \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$	this is an acceptable form for the scalar product.
$28 \cdot 5^{\circ} \text{ or } 0 \cdot 50 \text{ radians}$	

Que	estion	Generic Sch	eme		Illustrative Scheme	Max Mark
5						
•1	SS	start to integrate		• ¹	$\frac{1}{1/2}(\dots)^{1/2}$	
•2	pd	complete integration			$\dots \times \frac{1}{3}$	
•3	pd	process limits		• ³	$\frac{2}{3}(3t+4)^{\frac{1}{2}}-\frac{2}{3}(3(4)+4)^{\frac{1}{2}}$	
•4	pd	start to solve equation	n	• ⁴	$3^{(3t+4)} - 3^{(3(4)+4)}$ $(3t+4)^{\frac{1}{2}} = 7$ $t = 15$	
•5	pd	solve for <i>t</i>		• ⁵	t=15	5
Not	es:					
 2. 3. 4. 5. 6. 	4. The integral obtained must contain a non integer power for \bullet^4 and \bullet^5 to be available. 5. Do not penalise the inclusion of $`+\mathcal{C}$ '.					
Cor	nmonl	y Observed Responses:				
		A: Forgetting the $\frac{1}{3}$		Candid	ate B	
2(3	$(3x+4)^{\frac{1}{2}}$	$\begin{bmatrix} t \\ t \end{bmatrix}_4^t = 2$	• ¹ \checkmark • ² \times	$\left[\frac{1}{6}(3X +$	$4)^{\frac{1}{2}} \bigg]_{4}^{t} = 2 \qquad \bullet^{1} \mathbf{X} \bullet^{2} \mathbf{\checkmark}$	•
	$(3t+4)^{\frac{1}{2}}$	$\left - \left(2(3(4) + 4)^{\frac{1}{2}} \right) = 2 \right $	•3 🖌	``	$4)^{\frac{1}{2}} - \left(\frac{1}{6}(3(4)+4)^{\frac{1}{2}}\right) = 2$	•3 ×
(3 <i>t</i> -	$(+4)^{\frac{1}{2}} =$	5	•4 💉	$(3t+4)^{\frac{1}{2}}$	=======================================	•4
<i>t=</i> ′	7		5	<i>t</i> =84		5
			• •			• 3 🔨
Car	ndidate		• •	Candid	ate D	• 2
Car	ndidate	T	• • ² X		ate D $(+4)^{-\frac{3}{2}} \Big]_{4}^{t} = 2$	• ³ • ² X
$\begin{bmatrix} Car \\ \underline{(3.2)} \end{bmatrix}$	$\frac{x+4)^{\frac{1}{2}}}{\frac{1}{2}}$		• •² X	$\left[-\frac{3}{2}(3x)\right]$		
Car $\begin{bmatrix} (3) \\ \frac{2}{3}(3) \end{bmatrix}$	addidate $\frac{x+4)^{\frac{1}{2}}}{\frac{1}{2}}$ 3x+4)	$\times 3 \bigg]_{4}^{t} = 2$	• • 2 X • 3 X	$\begin{bmatrix} -\frac{3}{2}(3x) \\ -\frac{3}{2}(3t+1) \\ (3t+4)^2 \end{bmatrix}$	$ \left[\left(\frac{3}{2} + 4 \right)^{-\frac{3}{2}} \right]_{4}^{t} = 2 $ $ \left[\left(-\frac{3}{2} \times 16^{-\frac{3}{2}} \right) \right] = 2 $ $ \left[\left(-\frac{3}{2} \times 16^{-\frac{3}{2}} \right) \right] = 2 $ $ \left[\left(-\frac{3}{2} \times 16^{-\frac{3}{2}} \right) \right] = 2 $	• ¹ X • ² X
Car $\begin{bmatrix} (3) \\ \frac{2}{3}(3) \\ \frac{2}{3}(3) \end{bmatrix}$	addidate $\frac{x+4)^{\frac{1}{2}}}{\frac{1}{2}}$ 3x+4)	$ \times 3 \Big]_{4}^{t} = 2 $ $ \frac{1}{2} \Big]_{4}^{t} = 2 $ $ \frac{1}{2} \Big]_{4}^{t} = 2 $ $ \frac{1}{2} \Big] - \Big[\frac{2}{3} (3(4) + 4)^{\frac{1}{2}} \Big] = 2 $		$\begin{bmatrix} -\frac{3}{2}(3x) \\ -\frac{3}{2}(3t+1) \\ (3t+4)^2 \end{bmatrix}$	$ \left[\frac{4}{2} \right]_{4}^{-\frac{3}{2}} = 2 $ $ \left[-\frac{4}{2} \right]_{4}^{-\frac{3}{2}} - \left(-\frac{3}{2} \times 16^{-\frac{3}{2}} \right) = 2 $ $ \left[\frac{4}{2} \right]_{2}^{-\frac{3}{2}} - \left(-\frac{3}{2} \times 16^{-\frac{3}{2}} \right) = 2 $ $ equivalent not accepted $	• ¹ X • ² X

Page 23


Qu	Question		Generic Scheme	Illustrative Scheme	Max Mark
6					-
	•1	SS	use correct double angle formula	• $\sin x - 2(1 - 2\sin^2 x)$ stated or implied by • ²	
	• ²	SS	arrange in standard quadratic form	$\bullet^2 4\sin^2 x + \sin x - 3 = 0$	
	•3	SS	start to solve	• ³ $(4\sin x - 3)(\sin x + 1) = 0$	
				0 R	
				$\frac{-1\pm\sqrt{\left(1\right)^2-4\times4\times\left(-3\right)}}{2\times4}$	
	•4	ic	reduce to equations in $\sin x$ only	• ⁴ sin $x = \frac{3}{4}$ and sin $x = -1$	
	• ⁵	pd	process to find solutions in given domain	• $5 0.848$, 2.29 and $\frac{3\pi}{2}$	5
				0 R	
				• ⁴ sin $x = \frac{3}{4}$ and $x = 0.848$, 2.29 • ⁵ sin $x = -1$, and $x = \frac{3\pi}{2}$	
No	tes:				I
 2. 3. 4. 	In the until the Substitution $i = 0$, and the Candidate Candidat	event he equ tuting led the must atic fo dates	uation reduces to a quadratic in $\sin x$. g $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2\alpha$ e equation is written in terms of <i>x</i> at s appear by \bullet^3 stage for \bullet^2 to be award ormula to solve the equation, '=0' m may express the equation obtained at	g substituted for $\cos 2x$, \bullet^1 cannot be aw	m ed.

available if sinx appears explicitly at this stage.

- 6. •⁴ and •⁵ are only available as a consequence of solving a quadratic equation.
 7. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic written in the form $ax^2 + bx = c$.
- 8. \bullet^5 is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 9. $\sin x + 4\sin^2 x 3 = 0$ does not gain \bullet^2 , unless \bullet^3 is awarded.

Commonly Observed Responses:			
Candidate A		Candidate B	
• ¹ \checkmark • ² \checkmark (4 <i>s</i> -3)(<i>s</i> +1)=0 $s = \frac{3}{4}, s = -1$ $x = 0.848, 2.29 \text{ and } \frac{3\pi}{2}$	\bullet^3 \checkmark \bullet^4 X \bullet^5 \checkmark	• ¹ $\sqrt{4\sin^2 x + \sin x - 3} = 0$ $5\sin x - 3 = 0$ $\sin x = \frac{3}{5}$ x = 0.644, 2.50	• ² √ • ³ X • ⁴ X
Candidate C		Candidate D	
• ¹ $\sin x - 2(1 - 2\sin^2 x) = 1$ $\sin x - 2 + 4\sin^2 x = 1$ $4\sin^2 x + \sin x = 3$ $\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}$	•2 ** •3 ** •4 * •5 **	• ¹ $\sin x - 2(1 - 2\sin^2 x) = 1$ $4\sin^2 x + \sin x - 3 = 0$ $4\sin^2 x + \sin x = 3$ $\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}$	• ² ✓ • ³ ¾ • ⁴ X
Candidate E: Reading $\cos 2x$ as c	$\cos^2 X$		
$\sin x - 2\cos^2 x = 1$ $\sin x - 2(1 - \sin^2 x) = 1$	• ¹ X		
$2\sin^{2} x + \sin x - 3 = 0$ (2sin x+3)(sin x-1)=0	•2 • x		
$\sin x = -\frac{3}{2}, \sin x = 1$	•4		
no solution, $X = \frac{\pi}{2}$	•5 💉		

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark		
7	a					
• ¹	SS	know to and find intersection of line and curve	• ¹ $2x = 6x - x^2 \Longrightarrow x = 0, x = 4$			
• ²	ic	use " upper – lower"	• ² $\int ((6x-x^2)-2x) dx$			
• ³	pd	integrate	• $3 2x^2 - \frac{1}{3}x^3$			
• ⁴	pd	substitute limits and evaluate	• $10\frac{2}{3}$			
• ⁵	pd	evaluate area developed	• $10\frac{2}{3} \times 300 = 3200 \mathrm{m}^2$	5		
Not	tes:					
1. '0' appearing as the lower limit of the integral is sufficient evidence for $x=0$ at \bullet^1 stage.						
2. \bullet^5 is only available as a consequence of multiplying an exact answer at \bullet^4 stage.						
3. The omission of dx at \bullet^2 should not be penalised.						
4. Where a candidate differentiates one or both terms \bullet^3 , \bullet^4 and \bullet^5 are unavailable.						
5. Do not penalise the inclusion of '+ c '.						
6. Accept $\int (4x - x^2) dx$ for \bullet^2 .						

Que	estion	Generic Scheme	Illustrative Scheme	Max Mark			
7	b						
•6	SS	set derivative to 2	• $6 - 2x = 2$				
•7	pd	find point of contact	• ⁷ $x = 2, y = 8$				
•8	pd	find equation of road	$\bullet^8 \qquad y = 2x + 4$				
•9	SS	find correct integral	•9 $\left[\left(x^2 + 4x \right) - \left(3x^2 - \frac{1}{3}x^3 \right) \right]$				
• ¹⁰	ic	calculate area	• ¹⁰ 800m ²	5			
Not	es:						
 7. Candidates who arrive at an incorrect equation at •⁸, or produce an equation ex nihilo, must use an equation of the form y=2x+c with c>0, for •⁹ and •¹⁰ to be available. 8. y=2x+4 must appear explicitly or as part of the integrand for •⁸ to be awarded. 9. •¹⁰ is only available as a result of a valid strategy at the •⁹ stage, ie ∫(line)-(quadratic) and lower limit = 0 and upper limit < 3. 							
Con	nmonl	y Observed Responses:					
Line	Candidate D: Alternative Method Line has equation of the form $y=2x+c$, $y=2x+c$ and $y=6x-x^2$						
intersect where $x^2 - 4x + c = 0$ • ⁶ \checkmark							
tangency \Rightarrow 1 point of intersection							
$\Rightarrow b^2 - 4ac = 0$			•7 🗸				
16 - 4c = 0			• ⁸ ✓				
c = 4							
Continue as above.							

Question		Generic Scheme	Illustrative Scheme	Max Mark			
8							
•1	pd	correct values	• ¹ $g = -p$, $f = -2p$, $c = 3p + 2$				
•2	SS	substitute and rearrange	• ² $5p^2 - 3p - 2$				
•3	ic	knowing condition	$\bullet^3 \qquad g^2 + f^2 - c > 0$				
•4	pd	factorise and solve	• ⁴ $(5p+2)(p-1)=0 \Rightarrow p=-\frac{2}{5}, p=1$				
•5	ic	correct range	• ⁵ $p < -\frac{2}{5}, p > 1$	5			
Not	es:						
1.	Candigain •		centre, $(p, 2p)$ and state the radius, $r = \sqrt{(3p+1)}$	-2)			
2.	Accep	-	$(2p)^2 - (3p+2)$. If brackets are omitted \bullet^1 may t.	only			
3.							
4.							
5.		a candidate who uses $c = 2$ and follow	ws through to get $p < -\sqrt{\frac{2}{5}}$, $p > \sqrt{\frac{2}{5}}$, award \bullet^2 , \bullet	b^3 and			
	• ⁵ .						
6.		Evidence for \bullet^3 may appear at \bullet^5 stage.					
7.	7. \bullet^4 and \bullet^5 can only be awarded for solving a quadratic inequation.						
Cor	nmonl	y Observed Responses:					
Car	ndidate	e A	Candidate B				
g =	—2 <i>р</i> ,	$f = -4 \rho$, c=3p+2 • ¹ X	$(x-p)^{2}-p^{2}+(y-2p)^{2}-4p^{2}+3p+2=0$				
20,	о ² – 3 р	- 2 • ² ✓	$(x-p)^2+(y-2p)^2$ •	1 🗸			
g^2 -	$+ f^2 - b^2$	<i>C</i> > 0	$=5p^2-3p-2$	2 🗸			
(4 μ	0 +1)(5,	$(p-2)=0 \implies p=-\frac{1}{4}, p=\frac{2}{5} \bullet^4 \checkmark$	$5p^2 - 3p - 2 > 0$ •	3 🗸			
<i>p</i> <	$-\frac{1}{4}$,	$p > \frac{2}{5}$ $\bullet^5 \checkmark$	$(5p+2)(p-1) > 0 \qquad \bullet$	4 🗸			
	4	3	$p < -\frac{2}{5}, p > 1$	5 🗸			

Question	Gener	ic Scheme		Illustra	tive Scheme	Max Mark
9 a			1			-
● ¹ SS	ss know to differentiate			a = v'(t)		
\bullet^2 pd differentiates trig. function			•2	$-8\sin\left(2t\right)$	$-\frac{\pi}{2}$)	
• ³ pd	pd applies chain rule				and complete	
				a(t) = -1	$6\sin\left(2t-\frac{\pi}{2}\right)$	3
Commonly	Observed Respon	Ses:				
Candidate	A: Alternative N	lethod				
Part (a)		Part (b)			Part (c)	
$V(t) = 8\cos(t)$	$\left(2t - \frac{\pi}{2}\right) = 8\sin 2t$	$V(10) = 16\cos 20 = 6$	53	•4	$s(t) = \int v(t) dt$	•6 ✓
$V(t) = \dots$ $\bullet^1 \checkmark$ >0, \Rightarrow velocity is			increa	sing • ⁵	$g(t)4\cos 2t + c$	7
$=8\cos^2$				C	$s(t) = \int v(t) dt$ $s(t) = -4\cos 2t + c$ $4 = -4 + c \Longrightarrow c = 8$	-
=×	2 •3 •	I			\Rightarrow s (t) = -4 cos 2t + 8	_
×	2		or \Rightarrow $s(t) = 8 - 4\cos 2t$			2.1
Candidate	B: Candidates who	misinterpret the proces	s for ra	ate of chang	je.	
Part (a)		Part (b)			Part (c)	
$a(t) = \int 8\cos(t) dt$	$s\left(2t-\frac{\pi}{2}\right)dt$	If $t=10$, $a=4\sin\left(20\right)$	$-\frac{\pi}{2}+$	С	s = V(t)	,
$=4\sin(2)$	$2t-\frac{\pi}{2}+c$	=-1.63+	C		$\boldsymbol{s}(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$)
< columnation of the second se	cess award $\frac{0}{3}$	Cannot evaluate award	1 %		Award $\frac{2}{3}$	
Candidate C						
Part (a)		Pa	rt (b)			
a = V(t) or	-) ¹ a(10) = 4	$\sin\left(20-\frac{\pi}{2}\right)$	$= -1.63 \bullet^4$	
$a = 4\sin\left(2i\right)$	$\left(t-\frac{\pi}{2}\right)$ • ² ×	• ³ X		ecreasing	•5 💉	
		Or	ly as a	consequenc	the of \bullet^1 in part (a)	

Question		Generic Scheme		Illustrative Scheme	Max Mark	
9	b		1			
• ⁴	SS	know to and evaluate $a(10)$	• ⁴	$a(10) = 6 \cdot 53$		
• ⁵	ic	interpret result	• ⁵	a(10) > 0 therefore increasing	2	
Not	tes:					
		V^3 may be awarded if they appear in the ven acceleration and $V(t)$.		g for 9(b). However, •' requires a clear $s(t) = \int v(t) dt$	link	
•7	pd	integrate correctly		$s(t) = \int v(t) dt$ $s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + c$		
• ⁸	ic	determine constant and complete	• ⁸	$\mathcal{C} = 8 \operatorname{so} \mathcal{S}(t) = 4 \sin\left(2t - \frac{\pi}{2}\right) + 8$	3	
Notes:						
4. • ⁷ and • ⁸ are not available to candidates who work in degrees. However, accept $\int 8\cos(2t-90) dt$ for • ⁶ .						

[END OF MARKING INSTRUCTIONS]