

National Qualifications 2017

X747/76/11

Mathematics Paper 1 (Non-Calculator)

FRIDAY, 5 MAY 9:00 AM – 10:10 AM

Total marks — 60

Attempt ALL questions.

You may NOT use a calculator.

Full credit will be given only to solutions which contain appropriate working.

State the units for your answer where appropriate.

Answers obtained by readings from scale drawings will not receive any credit.

Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space **you must clearly identify the question number** you are attempting.

Use **blue** or **black** ink.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:
a.b =
$$|\mathbf{a}||\mathbf{b}|\cos \theta$$
, where θ is the angle between \mathbf{a} and \mathbf{b}
or
a.b = $a_1b_1 + a_2b_2 + a_3b_3$ where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$sin (A \pm B) = sin A cos B \pm cos A sin B$$
$$cos (A \pm B) = cos A cos B \mp sin A sin B$$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = cos2 A - sin2 A$$
$$= 2 cos2 A - 1$$
$$= 1 - 2 sin2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

- 1. Functions f and g are defined on suitable domains by f(x) = 5x and $g(x) = 2\cos x$.
 - (a) Evaluate $f(g(\mathbf{0}))$.
 - (b) Find an expression for g(f(x)).
- 2. The point P (-2, 1) lies on the circle $x^2 + y^2 8x 6y 15 = 0$. Find the equation of the tangent to the circle at P.

3. Given
$$y = (4x-1)^{12}$$
, find $\frac{dy}{dx}$.

4. Find the value of k for which the equation $x^2 + 4x + (k-5) = 0$ has equal roots.

5. Vectors **u** and **v** are
$$\begin{pmatrix} 5\\1\\-1 \end{pmatrix}$$
 and $\begin{pmatrix} 3\\-8\\6 \end{pmatrix}$ respectively.

(b)

Vector w makes an angle of $\frac{\pi}{3}$ with u and $|w| = \sqrt{3}$. Calculate u.w.

3

MARKS

1

2

4

3

6. A function, *h*, is defined by $h(x) = x^3 + 7$, where $x \in \mathbb{R}$. Determine an expression for $h^{-1}(x)$.

7. A(-3, 5), B(7, 9) and C(2, 11) are the vertices of a triangle. Find the equation of the median through C.

8. Calculate the rate of change of
$$d(t) = \frac{1}{2t}$$
, $t \neq 0$, when $t = 5$. 3

9. A sequence is generated by the recurrence relation $u_{n+1} = m u_n + 6$ where *m* is a constant.

(a)	Given $u_1 = 28$ and $u_2 = 13$, find the value	ie of <i>m</i> .	2
(b)	(i) Explain why this sequence appro	aches a limit as $n \rightarrow \infty$.	1
	(ii) Calculate this limit.		2

(ii) Calculate this limit.

3

10. Two curves with equations $y = x^3 - 4x^2 + 3x + 1$ and $y = x^2 - 3x + 1$ intersect as shown in the diagram.

(a) Calculate the shaded area.

The line passing through the points of intersection of the curves has equation y = 1 - x.

(b) Determine the fraction of the shaded area which lies below the line y = 1 - x.

4

[Turn over

11. A and B are the points (-7, 2) and (5, *a*). AB is parallel to the line with equation 3y - 2x = 4. Determine the value of *a*.

12. Given that $\log_a 36 - \log_a 4 = \frac{1}{2}$, find the value of *a*.

13. Find
$$\int \frac{1}{(5-4x)^{\frac{1}{2}}} dx, \ x < \frac{5}{4}.$$

- 14. (a) Express $\sqrt{3} \sin x^\circ \cos x^\circ$ in the form $k \sin (x-a)^\circ$, where k > 0 and 0 < a < 360.
 - (b) Hence, or otherwise, sketch the graph with equation $y = \sqrt{3} \sin x^\circ \cos x^\circ$, $0 \le x \le 360$.

Use the diagram provided in the answer booklet.

3

3

4

3

1

15. A quadratic function, f, is defined on \mathbb{R} , the set of real numbers.

Diagram 1 shows part of the graph with equation y = f(x). The turning point is (2, 3).

Diagram 2 shows part of the graph with equation y = h(x). The turning point is (7, 6).

Diagram 1

Diagram 2

(a) Given that
$$h(x) = f(x+a)+b$$
.

Write down the values of a and b.

- (b) It is known that $\int_{1}^{3} f(x) dx = 4$. Determine the value of $\int_{6}^{8} h(x) dx$.
- (c) Given f'(1) = 6, state the value of h'(8).

[END OF QUESTION PAPER]

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

	FOR OFFICIAL USE			
	National Qualifications 2017		Mark	
X747/76/01	Mathematics P		on-Calcu nswer Bo	
FRIDAY, 5 MAY 9:00 AM – 10:10 AM			* X 7 4 7 7	6 0 1
Fill in these boxes and	read what is printed below.			
		Town		
Full name of centre		Town		
	Surname	Town	Number o	of seat

Write your answers clearly in the spaces provided in this booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.

Before leaving the examination room you must give this booklet to the Invigilator; if you do not you may lose all the marks for this paper.

	•	-
•	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN
	1.(a)	MARGIN
	1.(b)	
	2.	
Ľ		

Г	-	-	
•	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN	
	4.		
L			

	-
QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN
5.(a)	MARGIN
5.(b)	
6.	

	•	-	
	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN	
	7.	MARGIN	
	8.		
L			

9.(a) Image: a constraint of the second of the	Г	
9.(b) (i)	QUESTIC NUMBE	DO NOT WRITE IN THIS
	9.(a	MARGIN
	0 (b	
9.(b) (ii)	9.(b (i)	
9.(b) (ii)		
9.(b) (ii)		
9.(b) (ii)		
9. (b) (ii)		
	9.(b	

DO NOT WRITE IN THIS MARGIN

ſ

L

QUESTION NUMBER

10.(a)

QUESTION NUMBER	DO NOT WRITE IN THIS
11.	MARGIN
12.	

			1
•	STION ABER	DO NOT WRITE IN THIS MARGIN	
	3.	MARGIN	
	.(a)		

-	
QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN
15.(a)	MARGIN
15.(b)	
13.(0)	
15.(c)	

QUESTION NUMBER DO NOT WRITE IN THIS MARGIN

QUESTION NUMBER

DO NOT WRITE IN THIS MARGIN

For Marker's Use				
Question No	Marks/Grades			
<u> </u>				

L

National Qualifications 2017

X747/76/12

Mathematics Paper 2

FRIDAY, 5 MAY 10:30 AM – 12:00 NOON

Total marks — 70

Attempt ALL questions.

You may use a calculator.

Full credit will be given only to solutions which contain appropriate working.

State the units for your answer where appropriate.

Answers obtained by readings from scale drawings will not receive any credit.

Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space **you must clearly identify the question number** you are attempting.

Use **blue** or **black** ink.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:
a.b =
$$|\mathbf{a}||\mathbf{b}|\cos \theta$$
, where θ is the angle between \mathbf{a} and \mathbf{b}
or
a.b = $a_1b_1 + a_2b_2 + a_3b_3$ where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$sin (A \pm B) = sin A cos B \pm cos A sin B$$
$$cos (A \pm B) = cos A cos B \mp sin A sin B$$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = cos2 A - sin2 A$$
$$= 2 cos2 A - 1$$
$$= 1 - 2 sin2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

2

2

3

Attempt ALL questions Total marks — 70

1. Triangle ABC is shown in the diagram below.

The coordinates of B are (3,0) and the coordinates of C are (9,-2). The broken line is the perpendicular bisector of BC.

- (a) Find the equation of the perpendicular bisector of BC.
- (b) The line AB makes an angle of 45° with the positive direction of the *x*-axis. Find the equation of AB.
- (c) Find the coordinates of the point of intersection of AB and the perpendicular bisector of BC.

2.	(a)	Show that $(x-1)$ is a factor of $f(x) = 2x^3 - 5x^2 + x + 2$.	2
----	-----	---	---

(b) Hence, or otherwise, solve f(x) = 0.

[Turn over

3. The line y = 3x intersects the circle with equation $(x-2)^2 + (y-1)^2 = 25$.

Find the coordinates of the points of intersection.

- 4. (a) Express $3x^2 + 24x + 50$ in the form $a(x+b)^2 + c$.
 - (b) Given that $f(x) = x^3 + 12x^2 + 50x 11$, find f'(x).
 - (c) Hence, or otherwise, explain why the curve with equation y = f(x) is strictly increasing for all values of x.

5

3

2

5

5

3

5. In the diagram, $\overrightarrow{PR} = 9i + 5j + 2k$ and $\overrightarrow{RQ} = -12i - 9j + 3k$.

(a) Express \overrightarrow{PQ} in terms of **i**, **j** and **k**.

The point S divides QR in the ratio 1:2.

- (b) Show that $\overrightarrow{PS} = i j + 4k$. 2
- (c) Hence, find the size of angle QPS.
- 6. Solve $5\sin x 4 = 2\cos 2x$ for $0 \le x < 2\pi$.
- 7. (a) Find the *x*-coordinate of the stationary point on the curve with equation $y = 6x 2\sqrt{x^3}$.
 - (b) Hence, determine the greatest and least values of y in the interval $1 \le x \le 9$.

[Turn over

- 8. Sequences may be generated by recurrence relations of the form $u_{\scriptscriptstyle n+1} = k \, u_{\scriptscriptstyle n} - 20$, $u_{\scriptscriptstyle 0} = 5$ where $k \in \mathbb{R}$.
 - (a) Show that $u_2 = 5k^2 20k 20$. 2
 - (b) Determine the range of values of k for which $u_2 < u_0$.
- **9.** Two variables, *x* and *y*, are connected by the equation $y = kx^n$. The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.

Find the values of *k* and *n*.

4

10. (a) Show that the points A(-7, -2), B(2, 1) and C(17, 6) are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\rm A}, r_{\rm B}$ and $r_{\rm C}$ respectively.

- $r_{\rm A} = \sqrt{10}$
- $r_{\rm B} = 2r_{\rm A}$
- $r_{\rm C} = r_{\rm A} + r_{\rm B}$
- (b) Determine the equation of the circle with centre D.

11. (a) Show that
$$\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x = \sin^3 x$$
, where $0 < x < \frac{\pi}{2}$.

(b) Hence, differentiate
$$\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$$
, where $0 < x < \frac{\pi}{2}$.

[END OF QUESTION PAPER]

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

	FOR OFFICIAL USE			
	National Qualifications 2017		Mark	
X747/76/02		Ma	thematics Pa Answer Bo	
FRIDAY, 5 MAY 10:30 AM – 12:00 NOON			* X 7 4 7 7	6027
Fill in these boxes and r	ead what is printed below			
		Town		
Forename(s)	Surname		Number o	of seat
Date of birth Day Month	Year Scotti	sh candidate n	umber	

Write your answers clearly in the spaces provided in this booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.

Before leaving the examination room you must give this booklet to the Invigilator; if you do not you may lose all the marks for this paper.

NAME 000000000000000000000000000000000000	Г		_
1.(b)	•	ESTION IMBER	DO NOT WRITE IN THIS
		.(a)	MARGIN
1.(c)		.(b)	
1.(c)			
		(c)	

2.(b)		

QUESTION NUMBER

J

3.

DO NOT WRITE IN THIS MARGIN

Page 04

QUES NUM		DO NOT WRITE IN THIS MARGIN
4.(a)	MARGIN
4.(b)	
4.(c)	

	•	-	-
•	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN	
	5.(a)	MARGIN	
	5.(b)		
L			

QUESTION NUMBER

I

6.

DO NOT WRITE IN THIS MARGIN

Page 08

7.(a) Market 7.(b) Image: state	Γ	-		
	•		DO NOT WRITE IN THIS	
7.(b)		7.(a)	MARGIN	
7.(b)				
7.(b) ()				
7.(b)				
7.(b)				
7.(b)				
		7.(b)		

			-
•	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN	
	8.(a)	MARCHIN	
	8.(b)		

QUESTION NUMBER

ſ

9.

DO NOT WRITE IN THIS MARGIN

Page 11

	-	
QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN	
10.(a)	MARGIN	
10.(b)		

	•	
	QUESTION NUMBER	DO NOT WRITE IN THIS MARGIN
	11.(a)	MARGIN
	11.(b)	
L		

ENTER NUMBER OF QUESTION DO NOT WRITE IN THIS MARGIN

ENTER NUMBER OF QUESTION

DO NOT WRITE IN THIS MARGIN

For	Marker's Use
Question No	Marks/Grades
<u> </u>	

L

2017 Mathematics Paper 1 (Non-calculator)

Higher

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:
$${}^{5}x = 2$$
 and $x = -4$
 ${}^{6}y = 5$ $y = -7$
Horizontal: ${}^{5}x = 2$ and $x = -4$
 ${}^{6}y = 5$ and $y = -7$
 ${}^{6}x = -4$ and $y = 5$
 ${}^{6}x = -4$ and $y = -7$

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0\cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Specific marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark
1. (a)			• ¹ evaluate expression	• ¹ 10	1
Note	Notes:				
Com	Commonly Observed Responses:				

Question		on	Generic scheme	Illustrative scheme	Max mark
1.	(b)		• ² interpret notation	$\bullet^2 g(5x)$	
			• ³ state expression for $g(f(x))$	• ³ $2\cos 5x$	2
2. C n 3. یو 4. یو	 Notes: 1. For 2cos5x without working, award both •² and •³. 2. Candidates who interpret the composite function as either g(x)×f(x) or g(x)+f(x) do not gain any marks. 3. g(f(x))=10cosx award •². However, 10cosx with no working does not gain any marks. 4. g(f(x)) leading to 2cos(5x) followed by incorrect 'simplification' of the function award •² and •³. 				
Com	monl	y Obs	served Responses:		
-	didate (x)		$\operatorname{os}(5x) \xrightarrow{\bullet^2 \checkmark \bullet^3 \checkmark} \operatorname{os}(x)$		

Question		Generic scheme	Illustrative scheme	Max mark
		• ¹ state coordinates of centre	• ¹ (4, 3)	
		• ² find gradient of radius	• ² $\frac{1}{3}$	
		• ³ state perpendicular gradient	• ³ -3	
		• ⁴ determine equation of tangent	•4 $y = -3x - 5$	4
s:				
cept	$\frac{2}{6}$ for	$r \bullet^2$.		
 2. The perpendicular gradient must be simplified at •³ or •⁴ stage for •³ to be available. 3. •⁴ is only available as a consequence of trying to find and use a perpendicular gradient. 4. At •⁴, accept y+3x+5=0, y+3x=-5 or any other rearrangement of the equation where the constant terms have been simplified. 				
Commonly Observed Responses:				
	cept e per is onl • ⁴ , ac e cons	cept $\frac{2}{6}$ for e perpend is only av • ⁴ , accept e constant	• ¹ state coordinates of centre • ² find gradient of radius • ³ state perpendicular gradient • ⁴ determine equation of tangent cept $\frac{2}{6}$ for • ² . e perpendicular gradient must be simplified a is only available as a consequence of trying to • ⁴ , accept $y+3x+5=0$, $y+3x=-5$ or any of e constant terms have been simplified.	• ¹ state coordinates of centre • ¹ (4, 3) • ² find gradient of radius • ³ state perpendicular gradient • ⁴ determine equation of tangent • ⁴ $y = -3x - 5$ cept $\frac{2}{6}$ for • ² . e perpendicular gradient must be simplified at • ³ or • ⁴ stage for • ³ to be available. is only available as a consequence of trying to find and use a perpendicular gradie • ⁴ , accept $y+3x+5=0$, $y+3x=-5$ or any other rearrangement of the equation of the equa

Question		on	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start to differentiate	• $12(4x-1)^{11}$	
			• ² complete differentiation	• ² ×4	2
Note			d for correct application of the cha		
Com	monl	y Obs	served Responses:		
	didate			Candidate B	
Wor	king s	subse	11	$\frac{dy}{dx} = 36(4x-1)^{11} \bullet^1 \times \bullet^2 \times$ ncorrect answer with no working	

Q	uesti	on	Gener	ic scheme	Illus	trative scheme	Max mark
4.			Me •1 use the discr	thod 1 Timinant	• $4^2 - 4 \times 12$	Method 1 $\times (k-5)$	
			• ² apply conditi	on and simplify	• ² 36-4 k =	0 or $36 = 4k$	
			• ³ determine th	e value of k	• ³ $k=9$		3
			Me •1 communicate factorised fo	•	• ¹ equal roo $\Rightarrow x^2 + 4x + 4$	Method 2 ots $-(k-5)=(x+2)^2$	
			• ² expand and c	ompare		4 leading to $k-5=4$	
			• ³ determine th	e value of k	• ³ $k=9$		
is 2. Ir	t the brac Met	ketec	I in their next lin if candidates use	e of working. See	Candidates A	candidate treats ' $k-5$ and B. iminant = 0 ' then \bullet^2 is lo	
			erved Response				
Can	didate	e A		Candidate B			
4 ² –	$4^2 - 4 \times 1 \times k = 5$ $\bullet^1 \checkmark$ $4^2 - 4$		$4^2 - 4 \times 1 \times k - 5$	• ¹ x			
36-	$36 - 4k = 0 \qquad \bullet^2 \checkmark \qquad 11 - 4k = 0$		● ² ✓ 1				
<i>k</i> =	9		• ³ •	$k = \frac{11}{4}$	● ³ √ 1		

Question	stion Generic scheme Illustrative sche		Max mark
5. (a)	•1 evaluate scalar product	• ¹ 1	1
Notes:			
Commonly Ob:	served Responses:		

Question	Generic scheme	Illustrative scheme	Max mark					
5. (b)	• ² calculate u	• ² \sqrt{27}						
	• ³ use scalar product	• ³ $\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3}$						
	• ⁴ evaluate u .w	• $\frac{9}{2}$ or 4.5	3					
Notes:								
	1. Candidates who treat negative signs with a lack of rigour and arrive at $\sqrt{27}$ gain \bullet^2 . 2. Surds must be fully simplified for \bullet^4 to be awarded.							
Commonly Obs	Commonly Observed Responses:							

Qı	uestion	Generic scheme	Illustrative scheme	Max mark			
6.		Method 1	Method 1				
		• ¹ equate composite function to x	• ¹ $h(h^{-1}(x)) = x$				
		$igstarrow^2$ write $hig(h^{-1}(x)ig)$ in terms of $h^{-1}(x)$	• ² $(h^{-1}(x))^3 + 7 = x$				
		• ³ state inverse function $h^{-1}(x) = \sqrt[3]{x-7} \text{ or } h^{-1}(x) = (x-7)^{\frac{1}{3}}$					
				3			
		Method 2	Method 2				
		• ¹ write as $y = x^3 + 7$ and start to rearrange	• ¹ $y-7=x^3$				
		• ² complete rearrangement	• ² $x = \sqrt[3]{y-7}$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or				
			$h^{-1}(x) = (x-7)^{\frac{1}{3}}$	3			
		Method 3	Method 3				
		• ¹ interchange variables	• ¹ $x = y^3 + 7$				
		• ² complete rearrangement	• ² $y = \sqrt[3]{x-7}$				
		• ³ state inverse function	• ${}^{3} h^{-1}(x) = \sqrt[3]{x-7}$ or				
			$h^{-1}(x) = (x-7)^{\frac{1}{3}}$	3			
Note		· · · · · · · · · · · · · · · · · · ·					
1. y	1. $y = \sqrt[3]{x-7} \left(\text{ or } y = (x-7)^{\frac{1}{3}} \right)$ does not gain • ³ .						
2. A	t• ³ stage,	accept h^{-1} expressed in terms of an	y dummy variable eg $h^{-1}(y) = \sqrt[3]{y-7}$	· .			
3. h	$x^{-1}(x) = \sqrt[3]{x}$	$\overline{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$ with no wor	king gains 3/3.				

Question	Generic s	scheme	Illustrative scheme	Max mark
Commonly Obs	served Responses:			
Candidate A				
	$x \to x^{3} \to x^{3} + 7 = h$ ^3 \to + 7 $\therefore -7 \to \sqrt[3]{}$	(x)	 ¹✓ awarded for knowing to pe the inverse operations in re order 	
	$\sqrt[3]{x-7}$		• ²	
			• •	
	$h^{-1}(x) = \sqrt[3]{x-7}$		• ³ √	
Candidate B - I	BEWARE	Candidate C		
$h'(x) = \dots \bullet^3 \mathbf{x}$		$h^{-1}(x) = \sqrt[3]{x} - 7$ With no working		

Q	uestion	Gener	ic scheme	Illus	trative scheme	Max mark
7.		• ¹ find midpoir	nt of AB	• ¹ (2,7)		
		• ² demonstrate	the line is vertical	• ² m_{median} UI	ndefined	
		• ³ state equation	on	• ³ $x = 2$		3
Note	es:					
1. <i>n</i>	$n_{median} = \frac{\pm 4}{0}a$	alone is not suffic	cient to gain \bullet^2 . Cai	ndidates mus	t use either 'vertical' o	-
،	undefined'	. However \bullet^3 is s	till available.			
2.	$m_{median} = \frac{4}{0}$	×' ' $m_{median} = \frac{4}{0}$ in	possible' ' $m_{median} = \frac{1}{2}$	infinite'	are not acceptable for	• ² .
F	0	these are follow		,	ned' then award \bullet^2 , an	
3.	$m_{median} = \frac{4}{0}$	=0 undefined' '	$n_{median} = -$ undefined	'are not ac	ceptable for \bullet^2 .	
4. •	³ is not ava	ilable as a conse	quence of using a nu	ımeric gradie	nt; however, see notes the coordinates of A ar	
f	ind the 'me	edian' through C		· /	d 1/3. However, if $a =$	
		• ³ are available. tes who find $15v$	x = 2x + 121 (median)	through B) c	or $3y = 2x + 21$ (median	through
) award 1/	•		, ,		
Com	monly Obs	erved Response	s:			
	didate A		Candidate B		Candidate C	
(2,7		● ¹ ✓	(2,7)	● ¹ ✓		1
<i>m</i> =	$\frac{4}{0}$		$m = \frac{4}{0}$		$m = \frac{4}{0}$	2
	undefine		= 0	• ² x	$y-7 = \frac{4}{0}(x-2)$	
x = 1	2	● ³ √ 1	<i>y</i> = 7	● ³ √ 2	0 = 4x - 8	
						, ³ ¥
Can	didate D		Candidate E			
(2,7	7)	● ¹ ✓	(2,7)	• ¹		
Med	ian passes	through $(2,7)$	Both coordinates			
	(2,11)	• ² *	value $2 \Rightarrow$ vertica	l line ●²✓		
<i>x</i> = 1	. ,	● ³ √ 1	x = 2	• ³ •		

Q	Question			ic schem	e		Illus	trative s	scheme	Max mark
8.		• ¹ write	• ¹ write in differentiable form			$\bullet^1 \frac{1}{2}t^{-1}$	-1			
		• ² diffe	• ² differentiate			•2	• ² $-\frac{1}{2}t^{-2}$			
Note		• ³ eval	uate der	ivative		• ³ –	1 50			3
1. C 2. • ²	andidate ² is only	es who arriv available fo Dbserved R	or differ	entiating		-			m at \bullet^1 award 0 ower of t .)/3.
Cano	didate A		-	Candida	ate B			Candid	ate C	
$\begin{vmatrix} 2t^{-1} \\ -2t^{-1} \end{vmatrix}$		• ¹ x • ² √1		$2t^{-1}$ - $2t^{-2}$		1		$-\frac{1}{2}t^{-2}$	• ¹ ✓ implied b	oy ● ² ✓
$-\frac{2}{25}$		● ³ √ 1		$-\frac{1}{50}$		•		$-\frac{1}{50}$	•3 ✓	
Cano	didate D		Candid	ate E		Candidat Bad form		ain rule	Candidate G	
$(2t)^{\dagger}$	^{−1} ● ¹	✓	$(2t)^{-1}$	• ¹	✓	2 <i>t</i> ⁻¹		● ¹ ✓	$2t^{-1}$	● ¹ ×
-(2	t) ⁻² • ²	×	$-(2t)^{-2}$	• ²	×	$-2t^{-2} \times 2$		• ² ✓	$-2t^{-2} \times 2$ $-\frac{4}{25}$	•² 🗴
$\left -\frac{1}{10} \right $	0 • ³	√ 1	$-\frac{2}{25}$	• ³	×	- <u>1</u> 50		•3 🗸	$-\frac{4}{25}$	- ³ √ 1

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		 ¹ interpret information ² state the value of <i>m</i> 	• ¹ $13 = 28m + 6$ stated explicitly or in a rearranged form • ² $m = \frac{1}{4}$ or $m = 0.25$	
					2
Note	es:				
1. 9	Statin	gʻ <i>m</i> ∶	$=\frac{1}{4}$, or simply writing $\frac{1}{4}$, with	no other working gains only \bullet^2 .	
Com	monl	y Obs	served Responses:		
Can	didate	e A		Candidate B	
13 =	28 <i>u</i> _n	+6	• ¹ ×	28 = 13m + 6 • ¹ x	
<i>u</i> _{<i>n</i>} =	<u>1</u> 4		• ² 1	$m = \frac{22}{13} \qquad \qquad \bullet^2 \checkmark 1$	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
9.	(b)	(i)	• ³ communicate condition for	• ³ a limit exists as the recurrence		
			limit to exist	relation is linear and $-1 < \frac{1}{4} < 1$	1	
Note	es:					
	2. For • ³ accept: any of $-1 < \frac{1}{4} < 1$ or $\left \frac{1}{4}\right < 1$ or $0 < \frac{1}{4} < 1$ with no further comment; or statements such as: " $\frac{1}{4}$ lies between -1 and 1" or " $\frac{1}{4}$ is a proper fraction" 3. • ³ is not available for: $-1 \le \frac{1}{4} \le 1$ or $\frac{1}{4} < 1$ or statements such as: "It is between -1 and 1." or " $\frac{1}{4}$ is a fraction."					
			who state $-1 < m < 1$ can only gair in part (a).	• ³ if it is explicitly stated		
		4	ept ' $-1 < a < 1$ ' for \bullet^3 .			
Com	imonl	y Obs	erved Responses:			
Can	didate	e C		Candidate D		
(a) (b)		$=\frac{1}{4}$		(a) $\frac{1}{4}$ $\bullet^1 \checkmark \bullet^2$ (b) $-1 < m < 1$ $\bullet^3 \checkmark$	✓	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
9.	(b)	(ii)	• ⁴ know how to calculate limit	• ⁴ $\frac{6}{1-\frac{1}{4}}$ or $L = \frac{1}{4}L + 6$		
			● ⁵ calculate limit	• ⁵ 8	2	
Note	es:	·				
7. • 6 8. F 9. F	⁴ and alcul or <i>L</i> or ca	• ⁵ are ation = 8 w ndida	ept $L = \frac{b}{1-a}$ with no further working e not available to candidates who consider the sequence. of further terms in the sequence. with no working, award 0/2. Attes who use a value of m appearing the sequence of m appearing the sequence.		th their	
Com	monl	y Obs	served Responses:			
Cano	didate	e E - I	no valid limit			
(a) n	(a) $m = 4$ $\bullet^1 \times$					
(b) /	$\hat{L} = \frac{6}{1-2}$	<u>6</u> - 4	• ⁴ √ 1 • ⁵ x			

Qı	uestio	n	Generic scheme	Illustrative scheme	Max mark
10.	(a)		 ¹ know to integrate between appropriate limits 	Method 1 • $\int_{0}^{2} \dots dx$	
			• ² use "upper - lower"	• ² $\int_{0}^{2} \left(\left(x^{3} - 4x^{2} + 3x + 1 \right) - \left(x^{2} - 3x + 1 \right) \right)$	
			• ³ integrate	• $\frac{x^4}{4} - \frac{5x^3}{3} + 3x^2$	
			• ⁴ substitute limits $\bullet^4 \left(\frac{2^4}{4} - \frac{5 \times 2^3}{3} + 3 \times 2^2\right) - (0)$		
			● ⁵ evaluate area	• ⁵ $\frac{8}{3}$	
				Method 2	
			 know to integrate between appropriate limits for both integrals 	• $\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$	
			• ² integrate both functions	• ² $\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} + x$ and $\frac{x^3}{3} - \frac{3x^2}{2} + x$	
			• ³ substitute limits into both functions	• ³ $\left(\frac{2^4}{4} - \frac{4(2^3)}{3} + \frac{3(2^2)}{2} + 2\right) - 0$ and $\left(\frac{2^3}{3} - \frac{3(2^2)}{2} + 2\right) - 0$	
			• ⁴ evaluation of both functions	• $\frac{4}{3}$ and $\frac{-4}{3}$	
			• ⁵ evidence of subtracting areas	• $\frac{4}{3} - \frac{-4}{3} = \frac{8}{3}$	5

Question	Gener	ic scheme	Illus	trative scheme	Max mark			
Notes:	Notes:							
 •¹ is not available to candidates who omit 'dx'. Treat the absence of brackets at •² stage as bad form only if the correct integral is obtained at •³. See Candidates A and B. Where a candidate differentiates one or more terms at •³, then •³, •⁴ and •⁵ are unavailable. Accept unsimplified expressions at •³ e.g. x⁴/4 - 4x³/3 + 3x²/2 + x - x³/3 + 3x²/2 - x. Do not penalise the inclusion of '+c'. Candidates who substitute limits without integrating do not gain •³, •⁴ or •⁵. •⁴ is only available if there is evidence that the lower limit '0' has been considered. Do not penalise errors in substitution of x = 0 at •³. 								
Commonly Obs	erved Response	s:						
Candidate A $\int_{0}^{1} \sqrt{x^{3} - 4x^{2} + 3x^{2}}$ $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 3x^{2}$	$+1-x^2-3x+1dx$ • ³	x $\checkmark \Rightarrow \bullet^2 \checkmark$	$\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 2x$ $\int \dots = -\frac{16}{3} \text{ canr}$	$+1 - x^{2} - 3x + 1 dx \bullet^{2}$ \bullet^{3} not be negative so $=\frac{16}{3}$ $= -\frac{16}{3}$ so Area $=\frac{16}{3} \bullet^{5} \checkmark$	√ 1			
		Trea	ating individua	l integrals as areas				
Candidate C - I • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ \therefore Area is $\frac{4}{3} - \left(\frac{1}{3}\right)$	4	Candidate D - M • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ • ⁴ $=\frac{4}{3}$ \therefore Area is $\frac{4}{3} + \frac{4}{3}$	✓	Candidate E - Method 2 •1 \checkmark •3 \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ •4 \checkmark Area cannot be negative \therefore Area is $\frac{4}{3} + \frac{4}{3} = \frac{8}{3}$ •5	/e			

Que	estior	ו	Generic scheme	Illustrative scheme	Max mark
10.	(b)		• ⁶ use "line - quadratic"	Method 1 • ⁶ $\int ((1-x)-(x^2-3x+1)) dx$	
			• ⁷ integrate	• ⁷ $-\frac{x^3}{3} + x^2$	
			 ⁸ substitute limits and evaluate integral 	• ⁸ $\left(-\frac{2^3}{3}+2^2\right)-(0)=\frac{4}{3}$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	
			• ⁶ use "cubic - <i>line</i> "	Method 2 • $^{6}\int ((x^{3}-4x^{2}+3x+1)-(1-x))dx$	
			• ⁷ integrate	• ⁷ $\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2$	
			• ⁸ substitute limits and evaluate integral	$\bullet^{8}\left(\frac{2^{4}}{4}-4\times\frac{2^{3}}{3}+2\times2^{2}\right)-(0)=\frac{4}{3}$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	
			• ⁶ integrate line	Method 3 • $^{6}\int(1-x)dx = \begin{bmatrix} x^{2}\\ x-\frac{x^{2}}{2} \end{bmatrix}_{0}^{2}$	
			• ⁷ substitute limits and evaluate integral	$\bullet^7 \left(2 - \frac{2^2}{2}\right) - (0) = 0$	
			 evidence of subtracting integrals 	• $^{8}0 - \left(-\frac{4}{3}\right) = \frac{4}{3} \text{ or } \frac{4}{3} - 0$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	4

Question	Generic scheme	Illustrative scheme	Max mark
Notes:			
candidate ha	Notes prefixed by *** may be subj s been penalised for the error in (a same error in (b).	- · · ·	
10. In Method correct in 11. Candidate to the ab 12. Where a unavailat	ot available to candidates who omit ds 1 and 2 only, treat the absence of ntegral is obtained at • ⁷ . es who have an incorrect expression sence of brackets lose • ² , but are aw candidate differentiates one or more ole. es where Note 3 has applied in part (⁶ brackets at \bullet^6 stage as bad form on to integrate at the \bullet^3 and \bullet^7 stage duvarded \bullet^6 . e terms at \bullet^7 , then \bullet^7 , \bullet^8 and \bullet^9 are	ie solely
13. In Method	ds 1 and 2 only, accept unsimplified	expressions at • ⁷ e.g. $x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{3}{2}$	$\frac{x^2}{2} - x$
14. Do not pe	enalise the inclusion of ' $+c$ '.		
	Methods 1 and 2 and \bullet^7 in method 3 in the formula of the formu	s only available if there is evidence	that the
16. At the • ⁹ awarded.	stage, the fraction must be consiste	nt with the answers at $ullet^5$ and $ullet^8$ for $ullet$	⁹ to be
17. Do not pe	enalise errors in substitution of $x = 0$	at \bullet^8 in Method 1 & 2 or \bullet^7 in Metho	d 3.
Commonly Obs	served Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
11.	 ¹ determine the gradient of given line or of AB ² determine the other gradient ³ find a 	Method 1 • $\frac{2}{3}$ or $\frac{a-2}{12}$ • $\frac{a-2}{12}$ or $\frac{2}{3}$ • $\frac{a-2}{12}$ or $\frac{2}{3}$	
	 Ind a I determine the gradient of given line e² equation of line and substitute 	Method 2	
Notes:	• ³ solve for a	$a-2=\frac{2}{3}(5+7)$ • ³ 10	3
Commonly Ob Candidate A simultaneous $m_{\text{line}} = \frac{2}{3}$ $3y = 2x + 20$ $3y = 2x - 10 + 30$ $0 = 0 + 30 - 3a$ $3a = 30$ $a = 10$	equations $ \begin{array}{c} \bullet^{1} \checkmark \\ 3a \\ \bullet^{2} \checkmark \end{array} $ $ \begin{array}{c} m_{AB} = \frac{a-2}{12} \\ \frac{a-2}{12} = -2 \\ a = -22 \\ \bullet^{3} \end{array} $	y-2 = $\frac{-}{3}(x+7)$ 3y = 2x + 20 3y = 2×5+20 3y = 30 y = 10	2 ,2 ✓

Q	Question		Generic scheme		Illus	Max mark		
12.			• ¹ use laws of l	ogs	• ¹ $\log_a 9$			
			• ² write in expo	onential form	• ² $a^{\frac{1}{2}} = 9$			
			• ³ solve for a		• ³ 81			3
Note	_							
1	66 μ mι	ıst be	simplified at \bullet^1	or \bullet^2 stage for \bullet^1 to	be awarded.			
2. A	4 ccept	log	9 at • ¹ .					
	•	U	nplied by \bullet^3 .					
	-							
			served Response					
Cano	didate	e A		Candidate B		Candidate C		
\log_a	144		• ¹ ¥	$\log_a 32$	• ¹ 🗴	$\log_a 9$	●1 🗸	
$a^{\frac{1}{2}} =$	= 144		• ² √ 1	$a^{\frac{1}{2}} = 32$	● ² ✓1	$a = 9^{\frac{1}{2}}$	• ² ¥	
a = '	12		• ³ ×		• ³ ^	<i>a</i> = 3	● ³ <mark>✓</mark> 2	
	didate							
			$g_a 4 = 1$					
\log_a	$\log_a 36^2 - \log_a 4^2 = 1 \bullet^1 \checkmark$							
\log_a	$\frac{36^2}{4^2} =$	= 1						
\log_a	81 =1	•	•² ✓					
a = 8	81		3					

Qu	Question		Generic scheme	Illustrative scheme	Max mark	
13.			• ¹ write in integrable form	• $(5-4x)^{-\frac{1}{2}}$		
			• ² start to integrate	• $(5-4x)^{-\frac{1}{2}}$ • $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}}$		
			• ³ process coefficient of x	• ³ × $\frac{1}{(-4)}$		
Note			 ⁴ complete integration a simplify 	nd $e^4 -\frac{1}{2}(5-4x)^{\frac{1}{2}}+c$	4	
1. 2. 3. 4.	For ca For ca form If can brack '+c'	andid awar ndidat cet no is rec	d 0/4. ces start to integrate individual te further marks are available. quired for• ⁴ .	t, only • ¹ is available. ator' without attempting to write in inte erms within the bracket or attempt to ex		
			served Responses:	Condidate D		
Cand	lidate	2 A		Candidate B		
(5-4	$(4x)^{-\frac{1}{2}}$		• ¹ 🗸	$(5-4x)^{\frac{1}{2}}$ • ¹ *		
$\frac{(5-4)}{\frac{1}{2}}$	$\frac{4x)^{\frac{1}{2}}}{\frac{1}{2}}$		• ² ✓ • ³ ^	$\frac{\left(5-4x\right)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{\left(-4\right)} \qquad \qquad \bullet^{2} \checkmark 1 \bullet^{3}$	~	
2(5-	$(-4x)^{\frac{1}{2}}$	+C	• ⁴ <mark>⁄</mark> 2	$-\frac{(5-4x)^{\frac{3}{2}}}{6}+c$ • ⁴ \checkmark 1		
Cand	lidate	e C		Candidate D		
Differentiate in part:				Differentiate in part:		
(5-4	$(4x)^{-\frac{1}{2}}$		•1 ✓	$\left(5-4x\right)^{-\frac{1}{2}} \qquad \bullet^1 \checkmark$		
$-\frac{1}{2}(5)$				$(5-4x)^{-\frac{1}{2}} \bullet^{1} \checkmark \\ \frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \times (-4) \bullet^{2} \checkmark \bullet^{3} \varkappa \\ -8(5-4x)^{\frac{1}{2}} + c \bullet^{4} \checkmark 1$		
$\frac{1}{8}(5-$	$-4x)^{-1}$	$\overline{2} + C$	● ⁴ <mark>√1</mark>	$-8(5-4x)^{\frac{1}{2}}+c$ • ⁴ \checkmark 1		

Q	Question		Generic Scheme	Illustrative Scheme	Max Mark			
14.	(a)		• ¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ stated explicitly				
			• ² compare coefficients	• ² $k \cos a^\circ = \sqrt{3}, k \sin a^\circ = 1$ stated explicitly				
			• ³ process for k	• ³ $k=2$				
			• ⁴ process for <i>a</i> and express in required form	• $4 2\sin(x-30)^{\circ}$	4			
Notes:								
1. A	1. Accept $k(\sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ}$ as bad form							

- only if the equations at the \bullet^2 stage both contain k.
- 2. Do not penalise the omission of degree signs.

3. $2\sin x^{\circ}\cos a^{\circ} - 2\cos x^{\circ}\sin a^{\circ}$ or $2(\sin x^{\circ}\cos a^{\circ} - \cos x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .

- 4. In the calculation of k = 2, do not penalise the appearance of -1.
- 5. Accept $k \cos a^{\circ} = \sqrt{3}, -k \sin a^{\circ} = -1$ for \bullet^2 .

6. •² is not available for $k \cos x^{\circ} = \sqrt{3}$, $k \sin x^{\circ} = 1$, however, •⁴ is still available.

- 7. •³ is only available for a single value of k, k > 0.
- 8. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without simplifying at any stage.
- 9. •⁴ is not available for a value of a given in radians.
- 10. Candidates may use any form of the wave equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted in the form $k \sin(x-a)^\circ$
- 11. Evidence for \bullet^4 may only appear as a label on the graph in part (b).

Commonly Observed Responses:

Responses with missing information in working:

Candidate A		Candidate B	
•	1 ^	$k\sin x\cos a - k\cos x\sin a$	• ¹ 🗸
$\tan a = \frac{1}{\sqrt{3}}, \ a = 30$.4 🗸	$\cos a = \sqrt{3}$ $\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}$ Not consistent with equations at • ² . $2\sin(x-30)^{\circ}$ • ³	• ² ×

Question	Gener	ic Scheme	Illustrative Scheme		Max Mark	
Responses wit	h the correct ex	pansion of $k \sin(x -$	$a)^{\circ}$ but erro	rs for either \bullet^2 or \bullet^4 .		
Candidate C		Candidate D		Candidate E		
$k\cos a = \sqrt{3}, k\sin a$	$\sin a = 1 \bullet^2 \checkmark$	$k\cos a = 1, k\sin a =$	√3 • ² ≭	$k\cos a = \sqrt{3}, k\sin a = -$	-1 ● ² ≭	
$\tan a = \sqrt{3}$ $a = 60$	•4 🗴	$\tan a = \sqrt{3}$ a = 60 $2\sin(x - 60)^{\circ}$	● ⁴ √ 1	$\tan a = -\frac{1}{\sqrt{3}}, \ a = 330$		
				$2\sin(x-330)^{\circ}$	• ⁴ √ 1	
Responses wit	h the incorrect l	abelling; k sin A cos	$B - k \cos A \sin b$	in B from formula list.		
Candidate F		Candidate G		Candidate H		
$k \sin A \cos B - k$	$k \cos A \sin B \bullet^1 x$	$k \sin A \cos B - k \cos A \sin B \bullet^{1} \mathbf{x}$		$k \sin A \cos B - k \cos A \sin B \bullet^{1} \mathbf{x}$		
$k\cos a = \sqrt{3}$		$k\cos x = \sqrt{3}$		$k\cos \mathbf{B} = \sqrt{3}$		
$k\sin a = 1$	• ² ✓	$k \sin x = 1$	• ² 🗴	$k\cos \mathbf{B} = \sqrt{3}$ $k\sin \mathbf{B} = 1$	• ² x	
$\tan a = \frac{1}{\sqrt{3}}, \ a = \frac{1}{\sqrt{3}}$	= 30	$\tan x = \frac{1}{\sqrt{3}}, x = 30$		$\tan B = \frac{1}{\sqrt{3}}, B = 30$ $2\sin(x - 30)^{\circ} \qquad \bullet^{3} \checkmark$		
$2\sin(x-30)^{\circ}$	● ³ ✓ ● ⁴ ✓	$2\sin(x-30)^{\circ}$	● ³ √ ● ⁴ √ 1	$2\sin(x-30)^\circ$ • ³	€ ⁴ 1	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark			
14.	(b)		• ⁵ roots identifiable from graph	• ⁵ 30 and 210				
			 ⁶ coordinates of both turning points identifiable from graph 	• ⁶ (120, 2) and (300, -2)				
			• ⁷ y-intercept and value of y at $x = 360$ identifiable from graph	• ⁷ –1	3			
Note	Notes:							
14. 15. 16.	Vertion Cand see a For a	cal m idates lso ca ny in	Indidates I and J.					
Com	monl	y Obs	served Responses:					
Cano	didate	e		Candidate J				
(a)2	(a) $2\sin(x-30)$ correct equation (a) $2\sin(x+30)$ incorrect equation							
` '			anslation: $(x+30)$	(b) Sketch of $2\sin(x+30)$				
	• ⁶ is			All 3 marks are available				

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
15.	(a)	\bullet^1 state value of <i>a</i>	• ¹ -5				
		\bullet^2 state value of b	• ² 3	2			
Note	Notes:						
Com	monly Obs	served Responses:					

Question		on	Generic scheme		Illustrative Scheme	Max Mark		
15.	(b)		• ³ state value of integral	• ³	10	1		
1. C 2. Ir n a	 Notes: 1. Candidates answer at (b) must be consistent with the value of b obtained in (a). 2. In parts (b) and (c), candidates who have 10 and -6 accompanied by working, the working must be checked to ensure that no errors have occurred prior to the correct answer appearing. Commonly Observed Responses: 							
From $a = -b$	Commonly Observed Responses: Candidate A From (a) $a = -3 \cdot \mathbf{1x}$ $b = 5 \cdot \mathbf{e^{2x}}$ $\int h(x) dx = 14 \cdot 1$							

Question		on	Generic scheme		Illustrative scheme	Max mark	
15. (c)			• ⁴ state value of derivative	•4	-6	1	
Note	Notes:						
Commonly Observed Responses:							

[END OF MARKING INSTRUCTIONS]

2017 Mathematics Paper 2

Higher

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

•⁵
$$x = 2$$
 $x = -4$
•⁶ $y = 5$ $y = -7$

Horizontal: $\bullet^5 x = 2$ and x = -4 $\bullet^6 y = 5$ and y = -7Vertical: $\bullet^5 x = 2$ and y = 5 $\bullet^6 x = -4$ and y = -7

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Q	Question		Generic scheme	Illustrative scheme	Max mark		
1.	(a)		• ¹ find mid-point of BC	• ¹ (6,-1)			
			• ² calculate gradient of BC	• ² $-\frac{2}{6}$			
			• ³ use property of perpendicular lines	• ³ 3			
			• ⁴ determine equation of line in a simplified form	•4 $y = 3x - 19$	4		
Note	Notes:						
2. T fo	 Notes: 1. •⁴ is only available as a consequence of using a perpendicular gradient and a midpoint. 2. The gradient of the perpendicular bisector must appear in simplified form at •³ or •⁴ stage for •³ to be awarded. 3. At •⁴, accept 3x - y = 19 = 0, 3x - y = 19 or any other rearrangement of the equation where 						

3. At •4, accept 3x-y-19=0, 3x-y=19 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark
1. (b)	• ⁵ use $m = \tan \theta$	• ⁵ 1	
	• ⁶ determine equation of AB	• ⁶ $y = x - 3$	2
Notes:			

4. At \bullet^6 , accept y - x + 3 = 0, y - x = -3 or any other rearrangement of the equation where the constant terms have been simplified.

Max mark	Illustrative scheme	Generic scheme	Question	
	• ⁷ $x = 8$ or $y = 5$	• ⁷ find x or y coordinate	1. (c)	
2	• ⁸ $y = 5$ or $x = 8$	• ⁸ find remaining coordinate		
			Notes:	
		served Responses:	Commonly Obs	
		served Responses:		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Method 1	Method 1	
			• ¹ know to use $x = 1$ in synthetic division	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	
			• ² complete division, interpret result and state conclusion	• ² 1 $\begin{vmatrix} 2 & -5 & 1 & 2 \\ 2 & -3 & -2 \\ \hline 2 & -3 & -2 & 0 \\ Remainder = 0 \therefore (x-1) \text{ is a factor} \end{vmatrix}$	2
			Method 2	Method 2	
			• ¹ know to substitute $x = 1$	• $1^{2}(1)^{3} - 5(1)^{2} + (1) + 2$	
			• ² complete evaluation, interpret result and state conclusion	• ² = 0 $\therefore (x-1)$ is a factor	2
			Method 3	Method 3	
			 ¹ start long division and find leading term in quotient 	• ¹ $2x^2$ (x-1) $2x^3 - 5x^2 + x + 2$	
			• ² complete division, interpret result and state conclusion	• ² $2x^{2}-3x-2$ $(x-1) \boxed{2x^{3}-5x^{2}+x+2}$ $\underline{2x^{3}-2x^{2}}$ $-3x^{2}+x$ $\underline{-3x^{2}+3x}$ $-2x+2$ $\underline{-2x+2}$ 0 remainder = 0 \therefore (x-1) is a factor	
					2

Question	Generic scheme	Illustrative scheme	Max mark
Notes:			
working mus 2. Accept any • 'f(• 'sinc	st arrive legitimately at 0 before \bullet^2 c of the following for \bullet^2 : 1) = 0 so $(x-1)$ is a factor' ce remainder = 0, it is a factor' 0 from any method linked to the wor	rking at that stage i.e. a candidate's an be awarded. d 'factor' by e.g. 'so', 'hence', '∴',	
 doul ' x = ' (x - 	pt any of the following for \bullet^2 : ble underlining the zero or boxing the x = -1 is a factor', $(x+1)$ is a factor', (x-1) is a root' $x = -1$ is a root'. word 'factor' only with no link		

Commonly Observed Responses:

Question		n	Generic scheme	Illustrative scheme	Max mark
2.	(b)		• ³ state quadratic factor	• 3 $2x^{2}-3x-2$	
			• ⁴ find remaining factors	• ⁴ (2x+1) and (x-2)	
			$ullet^5$ state solution	• ⁵ $x = -\frac{1}{2}$, 1, 2	3

Notes:

- 4. The appearance of "=0" is not required for \bullet^5 to be awarded.
- 5. Candidates who identify a different initial factor and subsequent quadratic factor can gain all available marks.
- 6. \bullet^5 is only available as a result of a valid strategy at \bullet^3 and \bullet^4 .

7. Accept
$$\left(-\frac{1}{2},0\right)$$
, $(1,0)$, $(2,0)$ for •⁵

Q	uestion	Generic scheme	Illustrative scheme	Max mark				
3.		• ¹ substitute for <i>y</i>	• ¹ $(x-2)^{2} + (3x-1)^{2} = 25$ or $x^{2} - 4x + 4 + (3x)^{2} - 2(3x) + 1 = 25$					
		• ² express in standard quadratic form	• ² $10x^2 - 10x - 20 = 0$					
		• ³ factorise	• ³ $10(x-2)(x+1)=0$					
		• ⁴ find <i>x</i> coordinates	• $x = 2$ $x = -1$					
		• ⁵ find y coordinates	• ⁵ $y = 6$ $y = -3$	5				
Note	Notes:							
4. A th 5. • ³ 6. • ⁴ 7. Fo p ic	 If a candidate arrives at an equation which is not a quadratic at •² stage, then •³, •⁴ and •⁵ are not available At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10. •³ is available for substituting correctly into the quadratic formula. •⁴ and •⁵ may be marked either horizontally or vertically. For candidates who identify both solutions by inspection, full marks may be awarded provided they justify that their points lie on both the line and the circle. Candidates who identify both solutions, but justify only one gain 2 out of 5. 							
		erved Responses:						
	didate A $2)^2 + (3x - x)^2 + ($	$1)^2 = 25 \qquad \bullet^1 \checkmark \qquad $	Candidate B Candidates who substitute into the circ equation only	le				
10 <i>x</i> ²	-10x = 20	• ² ×	2 🗸 3 🖌					
10 <i>x</i> ((x-1) = 20	• ³ √ 2	Sub $x = 2$ Sub $x = -1$					
x = 2	2 $x = 3$		$y^{2}-2y-24=0$ $y^{2}-2y-15=0$ (y-6)(y+4)=0 $(y+3)(y-5)=0$					
<i>y</i> = 0	6 <i>y</i> = 9	● ⁵ √ 2	y = 6 or y = 4 $y = -3 or y = 5(2,6) (-1,-3) •5 ×$					

Q	uesti	on	Generic scheme		Illustrative scheme	Max mark	
4.	(a)			Method 1	Method 1		
			• ¹ identify c	common factor	• $3(x^2 + 8x$ stated or implied by • ²		
			• ² complete	the square	• ² $3(x+4)^2$		
			• ³ process for required	or <i>c</i> and write in form	• $3(x+4)^2+2$	3	
				Method 2	Method 2	-	
			• ¹ expand co	ompleted square for	$e^{1} ax^{2} + 2abx + ab^{2} + c$		
			• ² equate co	pefficients	• ² $a=3$, $2ab=24$, $ab^2+c=50$		
			• ³ process for in require	or b and c and write and form	$\bullet^3 3(x+4)^2+2$	3	
Note	es:					,	
2. •		nly av			nly; however, see Candidate G. both multiplication and subtraction of		
			erved Respo	nses:			
Can	didate	e A			Candidate B		
$3 x^2$	$x^{2} + 8x$	$+\frac{50}{3}$		•1 🗸	$3x^2 + 24x + 50 = 3(x+8)^2 - 64 + 50 \bullet^1$	x • ² x	
	$3\left(x^{2}+8x+16-16+\frac{50}{3}\right)$				$=3(x+8)^2-14$ • ³	√2	
			3) • ² ^	further working is required			
Can	didate	e C			Candidate D		
ax^2	+ 2 abx	$a + ab^2$	+c	●1 ✓	$3((x^2+24x)+50)$ • ¹	×	
		b = 24 ≈ 4, c	$b^2 + c = 50$	• ² ¥		√ 1	
	$(+4)^2$	-	– J 4	● ³ <mark>√1</mark>	$3(x+12)^2 - 382$ • ³ \checkmark 1		

Question	Generic scheme	Illustrative scheme Max mark				
a=3, 2ab=24 b=4, c=2 \bullet^3 is awa working	$x^{2} + 2abx + ab^{2} + c \qquad \bullet^{1} \checkmark$ $ab^{2} + c = 50 \qquad \bullet^{2} \checkmark$ $arded as all relates to led square$	Candidate F $ax^2 + 2abx + ab^2 + c$ $\bullet^1 \checkmark$ $a = 3, \ 2ab = 24, \ ab^2 + c = 50$ $\bullet^2 \checkmark$ $b = 4, \ c = 2$ $\bullet^3 \times$ \bullet^3 is lost as no reference is made to completed square form				
Candidate G $3(x+4)^2 + 2$		Candidate H $3x^2 + 24x + 50$ $= 3(x+4)^2 - 16 + 50$ $\bullet^1 \checkmark \bullet^2 \checkmark$				
••••	3x + 16) + 2 24x + 48 + 2 24x + 50	$= 3(x+4)^{2} + 34$ $= 3(x+4)^{2} + 34$ • ³ *				

Q	Question		Generic scheme	Illustrative scheme	Max mark		
4.	(b)		• ⁴ differentiate two terms	• $3x^2 + 24x$			
			• ⁵ complete differentiation	• ⁵ +50	2		
Note	Notes:						
3. •	3. • ⁴ is awarded for any two of the following three terms: $3x^2$, $+24x$, $+50$						
Com	Commonly Observed Responses:						

Q	uestio	on	Generic scheme	Illustrative scheme Ma mai			
4.	(c)		Method 1	Method 1			
			• ⁶ link with (a) and identify sign of $(x+4)^2$	• ⁶ $f'(x) = 3(x+4)^2 + 2$ and $(x+4)^2 \ge 0 \forall x$			
			• ⁷ communicate reason	• ⁷ $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow$ always strictly increasing			
			Method 2	Method 2			
			• identify minimum value of $f'(x)$	 eg minimum value =2 or annotated sketch 			
			• ⁷ communicate reason	• ⁷ $2 > 0 \therefore (f'(x) > 0) \Rightarrow$ always strictly increasing 2			
Note	es:						
		pena	lise $(x+4)^2 > 0$ or the omission of	$f'(x)$ at \bullet^6 in Method 1.			
5. R 6. W 51 7. A 51	 4. Do not penalise (x+4)² > 0 or the omission of f'(x) at •⁶ in Method 1. 5. Responses in part (c) must be consistent with working in parts (a) and (b) for •⁶ and •⁷ to be available. 6. Where erroneous working leads to a candidate considering a function which is not always strictly increasing, only •⁶ is available. 7. At •⁶ communication should be explicitly in terms of the given function. Do not accept statements such as "(something)²≥0", "something squared ≥0". However, •⁷ is still available. 						
			served Responses:				
	Candidate I			Candidate J			
``	$f'(x) = 3(x+4)^{2} + 2$			Since $3x^2 + 24x + 50 = 3(x+4)^2 + \frac{166}{50}$			
	$3(x+4)^2+2>0 \Rightarrow$ strictly increasing. Award 1 out of 2			and $(x+4)^2$ is >0 for all x then			
				$3(x+4)^2 + \frac{166}{50} > 0$ for all x.			
				Hence the curve is strictly increasing values of x . •6 \checkmark •7 \checkmark 1	g for all		

Q	Question		Generic scheme	Illustrative scheme	Max mark	
5.	(a)		• ¹ identify pathway	• ¹ $\overrightarrow{PR} + \overrightarrow{RQ}$ stated or implied by • ²		
			• ² state \overrightarrow{PQ}	• ² $-3i-4j+5k$	2	
Not	Notes:					

1. Award \bullet^1 (9i+5j+2k)+(-12i-9j+3k).

2. Candidates who choose to work with column vectors and leave their answer in the form $\begin{pmatrix} -3 \end{pmatrix}$

 $\begin{bmatrix} -4 \\ 5 \end{bmatrix}$ cannot gain \bullet^2 .

- 3. \bullet^2 is not available for simply adding or subtracting vectors within an invalid strategy.
- 4. Where candidates choose specific points consistent with the given vectors, only \bullet^1 and \bullet^4 are available. However, should the statement 'without loss of generality' precede the selected points then marks \bullet^1 , \bullet^2 , \bullet^3 and \bullet^4 are all available.

Q	Question		Generic scheme	Illustrative scheme	Max mark			
5.	(b)		• ³ interpret ratio • ³ $\frac{2}{3}$ or $\frac{1}{3}$					
			• ⁴ identify pathway and demonstrate result	• ⁴ $\overrightarrow{PR} + \frac{2}{3}\overrightarrow{RQ}$ or $\overrightarrow{PQ} + \frac{1}{3}\overrightarrow{QR}$ leading				
				to i-j+4 k	2			
Note	es:							
5. This is a 'show that' question. Candidates who choose to work with column vectors must write their final answer in the required form to gain \bullet^4 . $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ does not gain \bullet^4 .								
6.	6. Beware of candidates who fudge their working between \bullet^3 and \bullet^4 .							

Question	Generic scheme		Illustrative scheme	Max mark
Commonly Obse	rved Responses:			
Candidate A - Is formula $\overrightarrow{PS} = \frac{n\overrightarrow{PQ} + m\overrightarrow{PR}}{m+n}$ $\overrightarrow{PS} = \frac{2\overrightarrow{PQ} + \overrightarrow{PR}}{3} \bullet^{3}$ $\overrightarrow{PS} = \frac{2\overrightarrow{PQ} + \overrightarrow{PR}}{3} + \begin{pmatrix}9\\5\\2\\3\\-4\\5\\-4\\5\\2\\3\\-4\\-4\\5\\2\\3\\-4\\-3\\-4\\-3\\-2\\3\\2\\-3\\-4\\-3\\-2\\-3\\-4\\-4\\-1\\-1\\-1\\-4\\-2\\-3\\-2\\-3\\-4\\-2\\-3\\-2\\-3\\-2\\-3\\-4\\-2\\-3\\-2\\-3\\-4\\-3\\-2\\-3\\-4\\-2\\-3\\-4\\-2\\-3\\-4\\-3\\-2\\-3\\-4\\-2\\-3\\-4\\-2\\-3\\-4\\-2\\-3\\-4\\-2\\-3\\-2\\-3\\-4\\-2\\-3\\-2\\-3\\-2\\-3\\-4\\-2\\-3\\-2\\-2\\-3\\-2\\-3\\-2\\-2\\-3\\-2\\-2\\-3\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\$		orig 2Q 3s = 3s =	didate B - BEWARE - treating P gin $5 = \overline{SR}$ $= 2q + r \bullet^3 \checkmark$ $= 2\begin{pmatrix} -3\\ -4\\ 5 \end{pmatrix} + \begin{pmatrix} 9\\ 5\\ 2 \end{pmatrix}$ $i - j + 4k \bullet^4 *$	as the

Question		on	Generic scheme	Illustrative scheme	Max mark
5.	(c)		Method 1	Method 1	
			● ⁵ evaluate PQ.PS	• ⁵ $\overrightarrow{PQ}.\overrightarrow{PS} = 21$	
			• ⁶ evaluate PQ	• ⁶ $\left \overline{PQ} \right = \sqrt{50}$ • ⁷ $\left \overline{PS} \right = \sqrt{18}$	
			• ⁷ evaluate \overline{PS}	$\bullet^7 \overrightarrow{PS} = \sqrt{18}$	
			• ⁸ use scalar product	• ⁸ cos QPS = $\frac{21}{\sqrt{50} \times \sqrt{18}}$	
			• ⁹ calculate angle	• ⁹ 45·6° or 0·795 radians	5
			Method 2	Method 2	
			• ⁵ evaluate \overline{QS}	• ⁵ $\left \overrightarrow{QS} \right = \sqrt{26}$	
			• ⁶ evaluate \overrightarrow{PQ}	• ⁵ $\left \overline{QS} \right = \sqrt{26}$ • ⁶ $\left \overline{PQ} \right = \sqrt{50}$	
			\bullet^7 evaluate \overline{PS}	$\bullet^7 \overrightarrow{PS} = \sqrt{18}$	
			• ⁸ use cosine rule	• ⁸ cos QPS = $\frac{(\sqrt{50})^2 + (\sqrt{18})^2 - (\sqrt{26})^2}{2 \times \sqrt{50} \times \sqrt{18}}$	
Note			• ⁹ calculate angle	• ⁹ 45·6° or 0·795 radians	5

7. For candidates who use \overrightarrow{PS} not equal to $\mathbf{i} - \mathbf{j} + 4\mathbf{k} \bullet^5$ is not available in Method 1 or \bullet^7 in Method 2.

- 8. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. However, $\sqrt{1^2 1^2 + 4^2}$ leading to $\sqrt{16}$ indicates an invalid method for calculating the magnitude. No mark can be awarded for any magnitude arrived at using an invalid method.
- 9. •⁸ is not available to candidates who simply state the formula $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

However,
$$\cos\theta = \frac{\overrightarrow{PQ}.\overrightarrow{PS}}{|\overrightarrow{PQ}| \times |\overrightarrow{PS}|}$$
 or $\cos\theta = \frac{21}{\sqrt{50} \times \sqrt{18}}$ is acceptable. Similarly for Method 2.

- 10. Accept answers which round to 46° or 0.8 radians.
- 11. Do not penalise the omission or incorrect use of units.
- 12. \bullet^9 is only available as a result of using a valid strategy.
- 13. \bullet^9 is only available for a single angle.
- 14. For a correct answer with no working award 0/5.

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate C - C	Calculating wrong angle	Candidate D- Calculating wrong angle
$\overrightarrow{QP}.\overrightarrow{QS} = 29$	• ⁵ x	$\overrightarrow{PS}.\overrightarrow{QP} = -21$ $\bullet^5 \times$
$\left \overrightarrow{\text{QP}} \right = \sqrt{50}$	● ⁶ <mark>√1</mark>	$\left \overline{\text{QP}}\right = \sqrt{50}$ $\bullet^6 \checkmark$
$\left \overrightarrow{QS} \right = \sqrt{26}$		$\left \overline{PS}\right = \sqrt{18}$ $\bullet^7 \checkmark$
$\cos P\hat{Q}S = \frac{29}{\sqrt{50} \times \sqrt{50}}$	• ⁸ √ 1	$\cos\theta = \frac{-21}{\sqrt{50} \times \sqrt{18}} \qquad \bullet^8 \checkmark 1$ $\theta = 134 \cdot 4 \qquad \bullet^9 \checkmark \text{ strategy}$
	● ⁹ ★ strategy incomplete	$\theta = 134 \cdot 4$ •9 * strategy incomplete
	who continue, and use the evaluate the required angle, are available.	For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.
Candidate E		Candidate F
From (a) $\overrightarrow{PQ} = -3$	21i-14j+k	From (a) $\overrightarrow{PQ} = 21i + 14j - k$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$	● ⁵ √ 1	$\overrightarrow{PQ}.\overrightarrow{PS} = 3$ $\bullet^5 \checkmark 1$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$ $\left \overrightarrow{PQ}\right = \sqrt{638}$ $\left \overrightarrow{PS}\right = \sqrt{18}$	● ⁶ <mark>√1</mark>	$\left \overline{PQ}\right = \sqrt{638}$ $\bullet^{6} \checkmark 1$
$\left \overrightarrow{PS} \right = \sqrt{18}$	•7 🗸	$\overrightarrow{PQ}.\overrightarrow{PS} = 3 \qquad \bullet^{5} \checkmark 1$ $\left \overrightarrow{PQ}\right = \sqrt{638} \qquad \bullet^{6} \checkmark 1$ $\left \overrightarrow{PS}\right = \sqrt{18} \qquad \bullet^{7} \checkmark$
$\cos Q\hat{P}S = \frac{-3}{\sqrt{638}} \times$		$\cos Q\hat{P}S = \frac{3}{\sqrt{638} \times \sqrt{18}} \bullet^8 \checkmark 1$
QPS = 91⋅6	• ⁹ 1	$Q\hat{P}S = 88 \cdot 4$ •9 $\checkmark 1$
Candidate G		
From (b) $\overrightarrow{PS} = -4$	4i-3j+k	
$\overrightarrow{PQ}.\overrightarrow{PS} = 3$	• ⁵ x	
	•6 🗸	
$\left \overrightarrow{PS} \right = \sqrt{26}$	• ⁷ √ 1	
$\begin{vmatrix} \overline{PS} = \sqrt{26} \\ \cos Q\hat{P}S = \frac{3}{\sqrt{50} \times \sqrt{20}} \end{vmatrix}$	● ⁸ √ 1	
$Q\hat{P}S = 85 \cdot 2$	• ⁹ √ 1	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
6.		 ¹ substitute appropriate double angle formula 	• ¹ $5\sin x - 4 = 2(1 - 2\sin^2 x)$	
		• ² express in standard quadratic form	• ² $4\sin^2 x + 5\sin x - 6 = 0$	
		• ³ factorise	• ³ $(4\sin x - 3)(\sin x + 2)$ • ⁴ • ⁵	
		• ⁴ solve for $\sin x^{\circ}$	• $\sin x = \frac{3}{4}$, $\sin x = -2$	
		• ⁵ solve for x	• ⁵ $x = 0.848, 2.29, \sin x = -2$	5
Note	es:			

1. •¹ is not available for simply stating $\cos 2x = 1 - 2\sin^2 x$ with no further working.

2. In the event of $\cos^2 x^\circ - \sin^2 x^\circ$ or $2\cos^2 x^\circ - 1$ being substituted for $\cos 2x$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\sin x^\circ$.

3. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x$ at \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.

4. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.

5. $5\sin x + 4\sin^2 x - 6 = 0$ does not gain \bullet^2 unless \bullet^3 is awarded.

6.
$$\sin x = \frac{-5 \pm \sqrt{121}}{8}$$
 gains •³

- 7. Candidates may express the equation obtained at \bullet^2 in the form $4s^2+5s-6=0$ or $4x^2+5x-6=0$. In these cases, award \bullet^3 for (4s-3)(s+2)=0 or (4x-3)(x+2)=0. However, \bullet^4 is only available if $\sin x$ appears explicitly at this stage.
- 8. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation.
- 9. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. ●⁵ is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 11. Accept answers which round to 0.85 and 2.3 at \bullet^5 eg $\frac{49\pi}{180}, \frac{131\pi}{180}$
- 12. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 13. Do not penalise additional solutions at \bullet^5 .

Question	Generic s	cheme	Illustrative sche	eme Max mark
Commonly Obs	served Responses:		Candidate B	
• ¹ • • ² • (4s-3)(s+2) = $s = \frac{3}{4}, s = -2$ x = 0.848, 2.24	• ⁴ 🗴		• ¹ ✓ $4\sin^2 x + 5\sin x - 6 = 0$ $9\sin x - 6 = 0$ $\sin x = \frac{2}{3}$ x = 0.730, 2.41	• ² ✓ • ³ x • ⁴ ✓ <u>2</u> • ⁵ ✓ <u>2</u>
Candidate C $5\sin x - 4 = 2(1$ $4\sin^2 x + 5\sin x$ $\sin x (4\sin x + 5)$ $\sin x = 6$, $4\sin^2 x + 5\sin^2 x$ no solution, $\sin^2 x = 0.253$, 2.86	x = 6 x = 6 x + 5 = 6 $x = \frac{1}{4}$	• ¹ ✓ • ² <u>√2</u> • ³ <u>√2</u> • ⁴ x	Candidate D $5\sin x - 4 = 2(1 - 2\sin^2 x)$ $4\sin^2 x + 5\sin x - 6 = 0$ $4\sin^2 x + 5\sin x = 6$ $\sin x(4\sin x + 5) = 6$ $\sin x = 6, \ 4\sin x + 5 = 6$ no solution, $\sin x = \frac{1}{4}$ x = 0.253, 2.89	• ¹ ✓ • ² ✓ • ³ <u>√2</u> • ⁴ ≭
Candidate E - 1 $5\sin x - 4 = 2\cos 5\sin x - 4 = 2(1)$ $2\sin^2 x + 5\sin x$ $\sin x = \frac{-5 \pm \sqrt{73}}{4}$ $\sin x = 0.886$, x = 1.08, 2.05	$\begin{aligned} -\sin^2 x \\ -6 = 0 \\ \underline{3} \end{aligned}$	$s^{2} x$ $\bullet^{1} x$ $\bullet^{2} \sqrt{1}$ $\bullet^{3} \sqrt{1}$ $\bullet^{4} \sqrt{1}$ $\bullet^{5} \sqrt{1}$		

Q	Question		Generic scheme		Illustrative so	cheme	Max mark
7.	(a)		• ¹ write in differentiable form	•1	$\dots -2x^{\frac{3}{2}}$ stated or	implied	
			• ² differentiate one term	•2	$\frac{dy}{dx} = 6\dots$ or $\frac{dy}{dx}$	$\frac{v}{x} = \dots - 3x^{\frac{1}{2}}\dots$	
			• ³ complete differentiation and equate to zero	• 3	$3x^{\frac{1}{2}}=0$ or	6=0	
			• ⁴ solve for <i>x</i>	•4	<i>x</i> = 4		4
			tes who integrate one or other of t	the te	nns • is unavallar	ນເຕ.	
			•	Candi	date B - integratir	g the second	term
	6 <i>x</i> – 2	3	• ¹ ✓	v = 6x	$x-2x^{\frac{3}{2}}$ • ¹	✓	
$\frac{dy}{dx} =$	=6-3	$5x^{\frac{5}{2}}$			$5 - \frac{4}{5} x^{\frac{5}{2}} $ \bullet^2		
	$3x^{\frac{5}{2}} =$		• ³ ×	$6 - \frac{4}{5}$	$x^{\frac{5}{2}} = 0$ \bullet^3	×	
<i>x</i> = ²	1.32		• ⁴ √ 1	x = 2	24 • ⁴	×	
1							

Q	Question		Generic scheme	Illustrative scheme	Max mark		
7.	(b)	 ⁶ consider value of y at end points 		 •⁵ 8 •⁶ 4 and 0 •⁷ greatest 8, least 0 stated explicitly 	3		
Notes:							
	4. The only valid approach to finding the stationary point is via differentiation. A numerical approach can only gain \bullet^6 .						

- 5. \bullet^7 is not available to candidates who do not consider both end points.
- 6. Vertical marking is not applicable to \bullet^6 and \bullet^7 .
- 7. Ignore any nature table which may appear in a candidate's solution; however, the appearance of (4,8) at a nature table is sufficient for \bullet^5 .
- 8. Greatest (4,8); least (9,0) does not gain \bullet^7 .
- 9. •⁵ and •⁷ are not available for evaluating y at a value of x, obtained at •⁴ stage, which lies outwith the interval $1 \le x \le 9$.
- 10. For candidates who **only** evaluate the derivative, \bullet^5 , \bullet^6 and \bullet^7 are not available.

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)		 find expression for u₁ find expression for u₂ and express in the correct form 	• ¹ $5k-20$ • ² $u_2 = k(5k-20)-20$ leading to $u_2 = 5k^2 - 20k - 20$	2
Note		y Obs	served Responses:		

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(b)		• ³ interpret information	• ³ $5k^2 - 20k - 20 < 5$	
			 ⁴ express inequality in standard quadratic form 	• $5k^2 - 20k - 25 < 0$	
			• ⁵ determine zeros of quadratic expression	• ⁵ –1, 5	
			• ⁶ state range with justification	• ⁶ $-1 < k < 5$ with eg sketch or table of signs	4
Not	es:				

1. Candidates who work with an equation from the outset lose \bullet^3 and \bullet^4 . However, \bullet^5 and \bullet^6 are still available.

2. At \bullet^5 do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequation by 5.

- 3. \bullet^4 and \bullet^5 are only available to candidates who arrive at a quadratic expression at \bullet^3 .
- 4. At •⁶ accept "k > -1 and k < 5" or "k > -1, k < 5" together with the required justification.
- 5. For a trial and error approach award 0/4.

Q	Question		Generic scheme	Illustrative scheme	Max mark
9.			Method 1	Method 1	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² introduce logs	• ² $\log_2 y = \frac{1}{4}\log_2 x + 3\log_2 2$	
			• ³ use laws of logs	• $\log_2 y = \log_2 x^{\frac{1}{4}} + \log_2 2^3$	
			• ⁴ use laws of logs	• $\log_2 y = \log_2 2^3 x^{\frac{1}{4}}$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5
			Method 2	Method 2	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4}\log_2 x + 3$	
			• ² use laws of logs	• $\log_2 y = \log_2 x^{\frac{1}{4}} + 3$	
			• ³ use laws of logs	• $\log_2 \frac{y}{x^{\frac{1}{4}}} = 3$	
			• ⁴ use laws of logs	$\bullet^4 \frac{y}{x^{\frac{1}{4}}} = 2^3$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5

Qu	lestion	Generic Scheme	Illustrative Scheme	Max Mark			
		Method 3	Method 3				
			The equations at \bullet^1 , \bullet^2 and \bullet^3				
			must be stated explicitly.				
		• ¹ introduce logs to $y = kx^n$	• ¹ $\log_2 y = \log_2 kx^n$				
		• ² use laws of logs	• ² $\log_2 y = n \log_2 x + \log_2 k$				
		• ³ interpret intercept	• ³ $\log_2 k = 3$				
		• ⁴ use laws of logs	•4 $k = 8$				
		• ⁵ interpret gradient	• ⁵ $n=\frac{1}{4}$				
				5			
		Method 4	Method 4				
		• ¹ interpret point on log graph	• $\log_2 x = -12$ and $\log_2 y = 0$				
		• ² convert from log to exp. form	• ² $x = 2^{-12}$ and $y = 2^{0}$				
		• ³ interpret point and convert	• ³ $\log_2 x = 0$, $\log_2 y = 3$ $x = 1$, $y = 2^3$				
		• ⁴ substitute into $y = kx^n$ and evaluate k	• $2^3 = k \times 1^n \Longrightarrow k = 8$				
		• ⁵ substitute other point into $y = kx^n$ and evaluate n	• ⁵ $2^0 = 2^3 \times 2^{-12n}$ $\Rightarrow 3 - 12n = 0$ 1				
			$\Rightarrow n = \frac{1}{4}$	5			
	Notes:						
	 Markers must not pick and choose between methods. Identify the method which best matches the candidates approach. 						
2. Tr	2. Treat the omission of base 2 as bad form at \bullet^1 and \bullet^3 in Method 1, at \bullet^1 and \bullet^2 for Method 2						
	and Method 3, and at \bullet^1 in Method 4.						
3. ' <i>n</i>	3. ' $m = \frac{1}{4}$ ' or 'gradient $= \frac{1}{4}$ ' does not gain \bullet^5 in Method 3.						
4. Ac	4. Accept 8 in lieu of 2^3 throughout.						

4. Accept 8 in lieu of 2³ throughout. 5. In Method 4 candidates may use (0,3) for \bullet^1 and \bullet^2 followed by (-12,0) for \bullet^3 .

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate A		Candidate B
With no workin Method 3:	g.	With no working. Method 3:
k = 8	•4 🗸	<i>n</i> = 8 •4 ×
$n=\frac{1}{4}$	•5 🗸	$k = \frac{1}{4} \qquad \qquad \bullet^5 \mathbf{x}$
Award 2/5		Award 0/5
Candidate C		Candidate D
Method 3:		Method 2:
$\log_2 k = 3$	•3 🗸	$\log_2 y = \frac{1}{4}\log_2 x + 3 \qquad \bullet^1 \checkmark$
k = 8	•4 ✓	$\log_2 y = \log_2 x^{\frac{1}{4}} + 3 \qquad \bullet^2 \checkmark$
$n=\frac{1}{4}$	●5 ✓	$y = x^{\frac{1}{4}} + 3 \qquad \qquad \bullet^3 \checkmark \bullet^4 \checkmark$
		$k = 1, n = \frac{1}{4}$ $\bullet^5 \times$
Award 3/5		Award 2/5
Candidate E		
Method 2:		
$y = \frac{1}{4}x + 3$		
$\log_2 y = \frac{1}{4}\log_2 y$	<i>x</i> +3 ● ¹ ✓	
$\log_2 y = \log_2 x^{\frac{1}{4}}$		
$\frac{y}{x^{\frac{1}{4}}} = 3$	• ³ • ⁴ ×	
$\begin{array}{c} x \\ y = 3x^{\frac{1}{4}} \end{array}$	● ⁵ <mark>√1</mark>	
Award 3/5		

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		Method 1 • ¹ calculate m_{AB} • ² calculate m_{BC} • ³ interpret result and state conclusion	Method 1 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ see Note 1 • $m_{BC} = \frac{5}{15} = \frac{1}{3}$ • $\dots \Rightarrow AB$ and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3	
			Method 2 • 1 calculate an appropriate vector e.g. \overrightarrow{AB} • 2 calculate a second vector e.g. \overrightarrow{BC} and compare • 3 interpret result and state conclusion	Method 2 •1 $\overrightarrow{AB} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ see Note 1 •2 $\overrightarrow{BC} = \begin{pmatrix} 15 \\ 5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{3}{5}\overrightarrow{BC}$ •3 $\dots \Rightarrow$ AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3	
			Method 3 • ¹ calculate m_{AB} • ² find equation of line and substitute point • ³ communication	Method 3 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ • e^{2} eg, $y - 1 = \frac{1}{3}(x - 2)$ leading to $6 - 1 = \frac{1}{3}(17 - 2)$ • 3 since C lies on line A, B and C are collinear		
1. A 2. •	"collinear".					

Question	_	ic scheme	Illus	trative scheme	Max mark
Commonly Obs Candidate A $m_{AB} = \frac{3}{9} = \frac{1}{3}$ $m_{BC} = \frac{5}{15}$ \Rightarrow AB and BC a B is a common hence A, B and are collinear.	point,	Candidate B $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ $\begin{pmatrix} 15\\ 5 \end{pmatrix}$ $\therefore \ \overrightarrow{AB} = \frac{5}{3}\overrightarrow{BC}$ $\Rightarrow AB and BC are particular by a back of the set of $	arallel ,	$\overrightarrow{BC} = \begin{pmatrix} 15\\5 \end{pmatrix} = 5 \begin{pmatrix} 3\\1 \end{pmatrix} \text{ and }$ $\begin{pmatrix} 9\\3 \end{pmatrix} = 3 \begin{pmatrix} 3\\1 \end{pmatrix} \bullet$ $\therefore \overrightarrow{AB} = \frac{5}{3} \overrightarrow{BC} ignore wor subsequent to correct statement at •2. \Rightarrow AB \text{ and BC are paral B is a common point, hence A, B and C$	king

Q	Question		Generic sc	heme		Illustrative scheme	Max mark
10.	(b)		• ⁴ find radius			6√ <u>10</u> 2	
			• ⁵ determine an ap	propriate ratio	• ⁵	e.g. 2:3 or $\frac{2}{5}$ (using B and C	
			• ⁶ find centre	C attacks	•6	or 3:5 or $\frac{8}{5}$ (using A and (8,3)	C)
Note			• ⁷ state equation o	r circle	•7	$(x-8)^2 + (y-3)^2 = 360$	4
i 5. [f an ir Do not	ncorre acce	ect centre or an incompt $(6\sqrt{10})^2$ for \bullet^7 .			n working then • ⁷ is availab s ex nihilo • ⁷ is not available	,
			erved Responses:		•	date E	
_	didate us =6					$a = 3\sqrt{10}$	4
		•	midpoint of BC			rets D as midpoint of AC	• ⁵ ×
	•		5, 3.5)	• ⁶ <mark>√</mark> 2		e D is(5, 2)	● ⁶ √ 2
(<i>x</i> -	$(9.5)^2$	+(y-	$(-3\cdot5)^2 = 360$	•7 1	(x-5)	$y^{2} + (y - 2)^{2} = 90$ • ⁷	√ 1
Cano	didate	e F		0	Candi	date G	
	us = 🗸	,		• ⁴ x	Radius	$5 = 6\sqrt{10}$	• ⁴ ✓
	rprets re D i		midpoint of AC	• ⁵ x • ⁶ √ 2	$\frac{CD}{BD} = \frac{1}{2}$	$\frac{3}{2}$ or simply $\frac{3}{2}$	•5 🗸
			$)^{2} = 10$		Centre	e D is(11, 4)	• ⁶ x
(-) (() –	,		(x- 1 1	$(y^2 + (y-4)^2 = 360)$	●7 ▼1

Q	uestion	Generic scheme	Illustrative scheme	Max mark
11.	(a)	Method 1 • 1 substitute for $\sin 2x$ • 2 simplify and factorise • 3 substitute for $1 - \cos^2 x$ and	Method 1 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above •2 $\sin x(1-\cos^2 x)$ •3 $\sin x \times \sin^2 x$ leading to $\sin^3 x$	
		simplify	sin x	3
		Method 2 • ¹ substitute for $\sin 2x$	Method 2 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above	
		• ² simplify and substitute for $\cos^2 x$	• ² $\sin x - \sin x (1 - \sin^2 x)$ • ³ $\sin x - \sin x + \sin^3 x$ leading to	
		• ³ expand and simplify	$\sin^3 x$	3
3. • 4. T 5. 0	warded ³ is not Treat mu Aarking Dn the a	if there is an error at • ² . available to candidates who work th ltiple attempts which are not score Principle (r).	d \bullet^2 in the same line of working \bullet^1 may shoughout with A in place of x . d out as different strategies, and apply lable mark is lost; however, any further	General
Com	monly (Observed Responses:		
Cano	didate A		Candidate B	
$\frac{2 \sin 2}{2}$	$\frac{1 x \cos x}{\cos x}$	$-\sin x \cos^2 x = \sin^3 x \bullet^1 \checkmark$	$LHS = \frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$	
sin x	$x - \sin x c$	$\cos^2 x = \sin^3 x \qquad \bullet^2 \land$	=	$\frac{1 x \cos x}{\cos x}$
1-c	$\cos^2 x = s$	$e^{3} \mathbf{x}$	$=\sin x$	
ln p with	both sid	<i>x</i> ne identity, candidates must work les independently ie in each line of LHS must be equivalent to the line	$\sin x - \sin x \cos^2 x \bullet^1 \checkmark$ $\sin x (1 - \cos^2 x) \bullet^2 \checkmark$	

Qu	estion	Generic scheme	Illustrative scheme	Max mark			
11.	(b)	 ⁴ know to differentiate sin³ x ⁵ start to differentiate ⁶ complete differentiation 	• ⁴ $\frac{d}{dx}(\sin^3 x)$ • ⁵ $3\sin^2 x$ • ⁶ $ \times \cos x$				
Note	s:			3			
Commonly Observed Responses:							

[END OF MARKING INSTRUCTIONS]