X747/76/11

Mathematics

 Paper 1(Non-Calculator)

FRIDAY, 5 MAY
9:00 AM - 10:10 AM

Total marks - 60

Attempt ALL questions.
You may NOT use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Answers obtained by readings from scale drawings will not receive any credit.

Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} . \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

Total marks - 60

1. Functions f and g are defined on suitable domains by $f(x)=5 x$ and $g(x)=2 \cos x$.
(a) Evaluate $f(g(0))$.
(b) Find an expression for $g(f(x))$.
2. The point $\mathrm{P}(-2,1)$ lies on the circle $x^{2}+y^{2}-8 x-6 y-15=0$.

Find the equation of the tangent to the circle at P .
3. Given $y=(4 x-1)^{12}$, find $\frac{d y}{d x}$.
4. Find the value of k for which the equation $x^{2}+4 x+(k-5)=0$ has equal roots.
5. Vectors \mathbf{u} and \mathbf{v} are $\left(\begin{array}{r}5 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{r}3 \\ -8 \\ 6\end{array}\right)$ respectively.
(a) Evaluate u.v.
(b)

Vector w makes an angle of $\frac{\pi}{3}$ with \mathbf{u} and $|\mathbf{w}|=\sqrt{3}$.
Calculate u.w.
6. A function, h, is defined by $h(x)=x^{3}+7$, where $x \in \mathbb{R}$.

Determine an expression for $h^{-1}(x)$.
7. $A(-3,5), B(7,9)$ and $C(2,11)$ are the vertices of a triangle.

Find the equation of the median through C .
8. Calculate the rate of change of $d(t)=\frac{1}{2 t}, t \neq 0$, when $t=5$.
9. A sequence is generated by the recurrence relation $u_{n+1}=m u_{n}+6$ where m is a constant.
(a) Given $u_{1}=28$ and $u_{2}=13$, find the value of m.
(b) (i) Explain why this sequence approaches a limit as $n \rightarrow \infty$.
(ii) Calculate this limit.
10. Two curves with equations $y=x^{3}-4 x^{2}+3 x+1$ and $y=x^{2}-3 x+1$ intersect as shown in the diagram.

(a) Calculate the shaded area.

The line passing through the points of intersection of the curves has equation $y=1-x$.

(b) Determine the fraction of the shaded area which lies below the line $y=1-x$.
11. A and B are the points $(-7,2)$ and $(5, a)$.
$A B$ is parallel to the line with equation $3 y-2 x=4$.
Determine the value of a.
12. Given that $\log _{a} 36-\log _{a} 4=\frac{1}{2}$, find the value of a.
13. Find $\int \frac{1}{(5-4 x)^{\frac{1}{2}}} d x, x<\frac{5}{4}$.
14. (a) Express $\sqrt{3} \sin x^{\circ}-\cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$, where $k>0$ and $0<a<360$.
(b) Hence, or otherwise, sketch the graph with equation $y=\sqrt{3} \sin x^{\circ}-\cos x^{\circ}, 0 \leq x \leq 360$. Use the diagram provided in the answer booklet.
15. A quadratic function, f, is defined on \mathbb{R}, the set of real numbers.

Diagram 1 shows part of the graph with equation $y=f(x)$.
The turning point is $(2,3)$.
Diagram 2 shows part of the graph with equation $y=h(x)$.
The turning point is $(7,6)$.

Diagram 1

Diagram 2
(a) Given that $h(x)=f(x+a)+b$.

Write down the values of a and b.
(b) It is known that $\int_{1}^{3} f(x) d x=4$.

Determine the value of $\int_{6}^{8} h(x) d x$.
(c) Given $f^{\prime}(1)=6$, state the value of $h^{\prime}(8)$.

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

X747/76/01

Mathematics Paper 1 (Non-Calculator)

 Answer BookletFRIDAY, 5 MAY
9:00 AM - 10:10 AM

Fill in these boxes and read what is printed below.

Full name of centre
\square

Town

Forename(s)

Surname

Number of seat

Date of birth

Write your answers clearly in the spaces provided in this booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not you may lose all the marks for this paper.

$\substack{\text { QUESTION } \\ \text { NUMBR } \\ \text { 1.(a) } \\ \hline}$		
1.(b)		

(8)

10.(a)

* X 747760107 *

QUESTION NUMBER	
13.	DO NOT WRIET THIS MARGIN

14.(a)
14.(b) An additional diagram, if required, can be found on Page 13.

Additional diagram for Question 14(b).

* X 7477601144 *

For Marker's Use		
Question No	Marks/Grades	

FRIDAY, 5 MAY
10:30 AM - 12:00 NOON

Total marks - 70
Attempt ALL questions.
You may use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Answers obtained by readings from scale drawings will not receive any credit.
Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} . \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (\mathrm{A} \pm \mathrm{B}) & =\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B}) & =\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A} & =2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A} & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \\
& =2 \cos ^{2} \mathrm{~A}-1 \\
& =1-2 \sin ^{2} \mathrm{~A}
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

Attempt ALL questions

Total marks - 70

1. Triangle $A B C$ is shown in the diagram below.

The coordinates of B are $(3,0)$ and the coordinates of C are $(9,-2)$.
The broken line is the perpendicular bisector of BC .

(a) Find the equation of the perpendicular bisector of $B C$.
(b) The line AB makes an angle of 45° with the positive direction of the x-axis. Find the equation of $A B$.
(c) Find the coordinates of the point of intersection of $A B$ and the perpendicular bisector of BC.
2. (a) Show that $(x-1)$ is a factor of $f(x)=2 x^{3}-5 x^{2}+x+2$.
(b) Hence, or otherwise, solve $f(x)=0$.
3. The line $y=3 x$ intersects the circle with equation $(x-2)^{2}+(y-1)^{2}=25$.

Find the coordinates of the points of intersection.
4. (a) Express $3 x^{2}+24 x+50$ in the form $a(x+b)^{2}+c$.
(b) Given that $f(x)=x^{3}+12 x^{2}+50 x-11$, find $f^{\prime}(x)$.
(c) Hence, or otherwise, explain why the curve with equation $y=f(x)$ is strictly increasing for all values of x.
5. In the diagram, $\overrightarrow{P R}=9 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$ and $\overrightarrow{R Q}=-12 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k}$.

(a) Express $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.

The point S divides $Q R$ in the ratio 1:2.
(b) Show that $\overrightarrow{P S}=\mathbf{i}-\mathbf{j}+\mathbf{4 k}$.
(c) Hence, find the size of angle QPS.
6. Solve $5 \sin x-4=2 \cos 2 x$ for $0 \leq x<2 \pi$.
7. (a) Find the x-coordinate of the stationary point on the curve with equation $y=6 x-2 \sqrt{x^{3}}$.
(b) Hence, determine the greatest and least values of y in the interval $1 \leq x \leq 9$.
8. Sequences may be generated by recurrence relations of the form $u_{n+1}=k u_{n}-20, u_{0}=5$ where $k \in \mathbb{R}$.
(a) Show that $u_{2}=5 k^{2}-20 k-20$. 2
(b) Determine the range of values of k for which $u_{2}<u_{0}$.
9. Two variables, x and y, are connected by the equation $y=k x^{n}$. The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line as shown.

Find the values of k and n.
10. (a) Show that the points $A(-7,-2), B(2,1)$ and $C(17,6)$ are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\mathrm{A}}, r_{\mathrm{B}}$ and r_{C} respectively.

- $r_{\mathrm{A}}=\sqrt{10}$
- $r_{\mathrm{B}}=2 r_{\mathrm{A}}$
- $r_{\mathrm{C}}=r_{\mathrm{A}}+r_{\mathrm{B}}$
(b) Determine the equation of the circle with centre D.

11. (a) Show that $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x=\sin ^{3} x$, where $0<x<\frac{\pi}{2}$.
(b) Hence, differentiate $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x$, where $0<x<\frac{\pi}{2}$.

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE
\square

Fill in these boxes and read what is printed below.

Full name of centre

\square

Town

Forename(s)

Surname

Number of seat

Date of birth

Write your answers clearly in the spaces provided in this booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not you may lose all the marks for this paper.

$\substack{\text { QuESTION } \\ \text { NUMER } \\ \text { 1.(a) } \\ \hline}$		
1.(b)		

3.
4.

N|
4. (a)

QUESTION
NUMBER
5. ${ }^{\text {a }}$

5.(a)

MARGIN

* X 747760206 *

7. (a)

* X 747760209 *
8.(a)

10.(a)
10.(b)
\square
11.(b)

For Marker's Use		
Question No	Marks/Grades	

2017 Mathematics Paper 1 (Non-calculator)

Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (\mathbf{j}).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{\bullet 5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{\cdot 5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Specific marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.	(a)	$\bullet \bullet^{1}$ evaluate expression	$\bullet 110$	1
Notes:				

Question		Generic scheme	Illustrative scheme	Max mark
1.	(b)	- ${ }^{2}$ interpret notation - ${ }^{3}$ state expression for $g(f(x))$	$\begin{aligned} & \bullet^{2} g(5 x) \\ & \bullet^{3} 2 \cos 5 x \end{aligned}$	2

1. For $2 \cos 5 x$ without working, award both \bullet^{2} and \bullet^{3}.
2. Candidates who interpret the composite function as either $g(x) \times f(x)$ or $g(x)+f(x)$ do not gain any marks.
3. $g(f(x))=10 \cos x$ award \bullet^{2}. However, $10 \cos x$ with no working does not gain any marks.
4. $g(f(x))$ leading to $2 \cos (5 x)$ followed by incorrect 'simplification' of the function award \bullet^{2} and \bullet^{3}.

Commonly Observed Responses:

Candidate A

$$
\begin{aligned}
g(f(x)) & =2 \cos (5 x) \\
& =10 \cos (x)
\end{aligned}
$$

	Generic scheme	Illustrative scheme	Max mark
2.	-1 state coordinates of centre -2 find gradient of radius - ${ }^{3}$ state perpendicular gradient - ${ }^{4}$ determine equation of tangent	-1 $(4,3)$ - ${ }^{2} \frac{1}{3}$ $\bullet^{3}-3$ - $4 y=-3 x-5$	4
Notes:			
1. Accept $\frac{2}{6}$ for \bullet^{2}. 2. The perpendicular gradient must be simplified at \bullet^{3} or \bullet^{4} stage for \bullet^{3} to be available. 3. \bullet^{4} is only available as a consequence of trying to find and use a perpendicular gradient. 4. At \bullet^{4}, accept $y+3 x+5=0, y+3 x=-5$ or any other rearrangement of the equation where the constant terms have been simplified.			
Commonly Observed Responses:			

	Question	Generic scheme	Illustrative scheme	Max mark
3.		- ${ }^{1}$ start to differentiate -2 complete differentiation	$\begin{aligned} & \bullet^{1} \quad 12(4 x-1)^{11} \ldots . . \\ & \bullet^{2} \quad \ldots \ldots \times 4 \end{aligned}$	2
Notes:				
1. ${ }^{2}$ is awarded for correct application of the chain rule.				
Commonly Observed Responses:				
Candidate A $\begin{aligned} & \frac{d y}{d x}=12(4 x-1)^{11} \times 4 \cdot \bullet^{1} \checkmark \cdot 2 \checkmark \\ & \frac{d y}{d x}=36(4 x-1)^{11} \end{aligned}$ Working subsequent to a correct answer: General Marking Principle (n)			Candidate B $\frac{d y}{d x}=36(4 x-1)^{11} \cdot \bullet^{1} \times \bullet^{2} x$ Incorrect answer with no working	

1. At the \bullet^{1} stage, treat $4^{2}-4 \times 1 \times k-5$ as bad form only if the candidate treats ' $k-5$ ' as if it is bracketed in their next line of working. See Candidates A and B.
2. In Method 1 if candidates use any condition other than 'discriminant $=0$ ' then \bullet^{2} is lost and $\bullet{ }^{3}$ is unavailable.

Commonly Observed Responses:

Candidate A		Candidate B		
$4^{2}-4 \times 1 \times k-5$	$\bullet \checkmark$	$4^{2}-4 \times 1 \times k-5$.$^{1 \times}$	
$36-4 k=0$	$\cdot^{2} \checkmark$	$11-4 k=0$	$\cdot^{2} \sqrt{ } 1$	
$k=9$	$\cdot^{3} \downarrow$	$k=\frac{11}{4}$	$\cdot \sqrt[3]{ } 1$	

| Question | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :---: |
| 5. (a) | \bullet^{1} evaluate scalar product | $\bullet 11$ | 1 |
| Notes: | | | |
| Commonly Observed Responses: | | | |

Question	Generic scheme	Illustrative scheme	Max mark
5. (b)	-2 calculate $\|\mathbf{u}\|$ -3 use scalar product - ${ }^{4}$ evaluate u.w	$\cdot 2 \sqrt{27}$ -3 $\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3}$ - $4 \frac{9}{2}$ or $4 \cdot 5$	3
Notes:			
1. Candidates who treat negative signs with a lack of rigour and arrive at $\sqrt{27}$ gain \bullet^{2}. 2. Surds must be fully simplified for \bullet^{4} to be awarded.			
Commonly Observed Responses:			

Question		Generic scheme	Illustrative scheme	Max mark
7.	\bullet • find midpoint of AB \bullet^{2} demonstrate the line is vertical \bullet^{3} state equation $\bullet^{1}(2,7)$ $\bullet^{2} m_{\text {median }}$ undefined $\bullet^{3} x=2$			
Notes:				

1. $m_{\text {median }}=\frac{ \pm 4}{0}$ alone is not sufficient to gain \bullet^{2}. Candidates must use either 'vertical' or 'undefined'. However \bullet^{3} is still available.
2. ' $m_{\text {median }}=\frac{4}{0} \times$ ' ' $m_{\text {median }}=\frac{4}{0}$ impossible' ' $m_{\text {median }}=\frac{4}{0}$ infinite' are not acceptable for \bullet '. However, if these are followed by either 'vertical' or 'undefined' then award \bullet^{2}, and \bullet^{3} is still available.
3. ' $m_{\text {median }}=\frac{4}{0}=0$ undefined' ' $m_{\text {median }}=\frac{-}{0}$ undefined' are not acceptable for \bullet '.
4. \bullet^{3} is not available as a consequence of using a numeric gradient; however, see notes 5 and 6 .
5. For candidates who find an incorrect midpoint (a, b), using the coordinates of A and B and find the 'median' through C without any further errors award $1 / 3$. However, if $a=2$, then both \bullet^{2} and \bullet^{3} are available.
6. For candidates who find $15 y=2 x+121$ (median through B) or $3 y=2 x+21$ (median through A) award $1 / 3$.

Commonly Observed Responses:

Candidate A $(2,7)$	Candidate B $(2,7)$	Candidate C $(2,7)$	$\bullet^{1} \checkmark$
$\begin{aligned} & m=\frac{4}{0} \\ & =0 \text { undefined } \quad \bullet^{2} x \\ & x=2 \end{aligned} \quad \cdot \sqrt[3]{\square}$	$\begin{array}{ll} m=\frac{4}{0} & \\ =0 & \bullet^{2} x \\ y=7 & \bullet^{3} \sqrt{ } \end{array}$	$\begin{aligned} & m=\frac{4}{0} \\ & y-7=\frac{4}{0}(x-2) \\ & 0=4 x-8 \\ & x=2 \end{aligned}$	$\bullet^{2 \wedge}$ $0{ }^{3} \times$
Candidate D $(2,7)$	Candidate E $(2,7)$		
Median passes through $(2,7)$ and $(2,11) \quad \bullet^{2} x$ $x=2$	Both coordinates have an x value $2 \Rightarrow$ vertical line $x=2$		

Question		Generic scheme	Illustrative scheme		Max mark
9.	(a)	- ${ }^{1}$ interpret information - ${ }^{2}$ state the value of m	-1 $13=28$ or in a -2 $m=\frac{1}{4}$	explicitly	2
Notes:					
1. Stating ' $m=\frac{1}{4}$ ' or simply writing ' $\frac{1}{4}$, with no other working gains only \bullet^{2}.					
Commonly Observed Responses:					
Candidate A			Candidate B		
$13=2 \underline{8 u_{n}}+6$			$28=13 m+6$		
$u_{n}=\frac{1}{4}$		$\bullet{ }^{2} \sqrt{1}$	$m=\frac{22}{13}$	$\bullet^{2} \sqrt{ }$	

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 9. | (b) (i) | \bulletcommunicate condition for
 limit to exist
 $\bullet 3$ | relation is linear and $-1<\frac{1}{4}<1$ | 1 |

Notes:

2. For \bullet^{3} accept:
any of $-1<\frac{1}{4}<1$ or $\left|\frac{1}{4}\right|<1 \quad$ or $\quad 0<\frac{1}{4}<1$ with no further comment;
or statements such as:
" $\frac{1}{4}$ lies between -1 and 1 " or " $\frac{1}{4}$ is a proper fraction"
3. \bullet^{3} is not available for:

$$
-1 \leq \frac{1}{4} \leq 1 \quad \text { or } \quad \frac{1}{4}<1
$$

or statements such as:
"It is between -1 and 1." or " $\frac{1}{4}$ is a fraction."
4. Candidates who state $-1<m<1$ can only gain \bullet^{3} if it is explicitly stated that $m=\frac{1}{4}$ in part (a).
5. Do not accept ' $-1<a<1$ ' for \bullet^{3}.

Commonly Observed Responses:

Candidate C

(a) $m=\frac{1}{4}$
(b) $-1<m<1$
$\bullet \downarrow \quad \bullet^{2} \checkmark$
$\cdot 3$

Candidate D
(a) $\frac{1}{4}$
(b) $-1<m<1$
(b) \bullet^{3}

Question			Generic scheme	Illustrative scheme	Max mark
9.	(b)	(ii)	- ${ }^{4}$ know how to calculate limit -5 calculate limit	$\begin{aligned} & \cdot \frac{6}{1-\frac{1}{4}} \text { or } L=\frac{1}{4} L+6 \\ & \cdot{ }^{5} 8 \end{aligned}$	2
Notes:					

6. Do not accept $L=\frac{b}{1-a}$ with no further working for \bullet^{4}.
7. \bullet^{4} and $\cdot{ }^{5}$ are not available to candidates who conjecture that $L=8$ following the calculation of further terms in the sequence.
8. For $L=8$ with no working, award $0 / 2$.
9. For candidates who use a value of m appearing ex nihilo or which is inconsistent with their answer in part (a) • ${ }^{4}$ and $\bullet{ }^{5}$ are not available.

Commonly Observed Responses:

Candidate E-no valid limit

(a) $m=4 \quad \bullet^{1} x$
(b) $L=\frac{6}{1-4} \quad \cdot \sqrt[4]{\sqrt{ }}$
$L=-2 \quad 0^{5} x$

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. \bullet^{1} is not available to candidates who omit ' $d x$ '.
2. Treat the absence of brackets at \bullet^{2} stage as bad form only if the correct integral is obtained at \bullet^{3}. See Candidates A and B.
3. Where a candidate differentiates one or more terms at \bullet^{3}, then \bullet^{3}, \bullet^{4} and \bullet^{5} are unavailable.
4. Accept unsimplified expressions at \bullet^{3} e.g. $\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+\frac{3 x^{2}}{2}+x-\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-x$.
5. Do not penalise the inclusion of ' $+c$ '.
6. Candidates who substitute limits without integrating do not gain \bullet^{3}, \bullet^{4} or \bullet^{5}.
7. \bullet^{4} is only available if there is evidence that the lower limit ' 0 ' has been considered.
8. Do not penalise errors in substitution of $x=0$ at \bullet^{3}.

Commonly Observed Responses:

Candidate A $\begin{aligned} & \int_{0}^{2} x^{3}-4 x^{2}+3 x+1-x^{2}-3 x+1 \\ & \frac{x^{4}}{4}-\frac{5 x^{3}}{3}+3 x^{2} \end{aligned}$	$\checkmark \Rightarrow \bullet^{2} \checkmark \quad \|$Candidat $\bullet^{1} \checkmark$ 2 $\int_{0}^{2} x^{3}-4 x^{2}$ $\frac{x^{4}}{4}-\frac{5 x^{3}}{3}$ $\int \ldots=-\frac{16}{3}$ However,	$+1-x^{2}-3 x+1 d x \quad \bullet^{2} \boldsymbol{x}$ $\cdot 0^{\sqrt{ } 1}$ not be negative so $=\frac{16}{3} \bullet{ }^{5} \times$ $-\frac{16}{3}$ so Area $=\frac{16}{3} \bullet{ }^{5} \checkmark$
	Treating individual integrals as areas	
Candidate C - Method 2 - 1 - - ${ }^{2} \checkmark$ $\frac{4}{3}$ and $\frac{-4}{3} \quad \bullet^{4} \checkmark$ \therefore Area is $\frac{4}{3}-\left(-\frac{4}{3}\right)=\frac{8}{3} \bullet{ }^{5} \checkmark$	Candidate D - Method 2 - ${ }^{2} \checkmark$ $\begin{array}{r} \frac{4}{3} \text { and } \frac{-4}{3} \quad 0^{4} \checkmark \\ =\frac{4}{3} \end{array}$ \therefore Area is $\frac{4}{3}+\frac{4}{3}=\frac{8}{3} \bullet{ }^{5} x$	Candidate E - Method 2 -1 \checkmark - ${ }^{2}$, $\frac{4}{3}$ and $\frac{-4}{3} \quad \bullet^{4} \checkmark$ Area cannot be negative \therefore Area is $\frac{4}{3}+\frac{4}{3}=\frac{8}{3} \bullet{ }^{5} \times$

Question		Generic scheme	Illustrative scheme	Max mark
10.	(b)	- ${ }^{6}$ use "line - quadratic" -7 integrate - 8 substitute limits and evaluate integral - 9 state fraction	Method 1 $\begin{aligned} & \cdot 6 \int\left((1-x)-\left(x^{2}-3 x+1\right)\right) d x \\ & \bullet-\frac{x^{3}}{3}+x^{2} \\ & \bullet^{8}\left(-\frac{2^{3}}{3}+2^{2}\right)-(0)=\frac{4}{3} \\ & \bullet \frac{1}{2} \end{aligned}$	
		- ${ }^{6}$ use "cubic - line" -7 integrate - 8 substitute limits and evaluate integral - 9 state fraction	Method 2 $\begin{aligned} & \cdot \int\left(\left(x^{3}-4 x^{2}+3 x+1\right)-(1-x)\right) d x \\ & \cdot \frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2} \\ & \cdot 8\left(\frac{2^{4}}{4}-4 \times \frac{2^{3}}{3}+2 \times 2^{2}\right)-(0)=\frac{4}{3} \\ & \bullet \frac{1}{2} \end{aligned}$	
		- ${ }^{6}$ integrate line - ${ }^{7}$ substitute limits and evaluate integral - 8 evidence of subtracting integrals - 9 state fraction	Method 3 $\begin{aligned} & \cdot 0^{6} \int(1-x) d x=\left[x-\frac{x^{2}}{2}\right]_{0}^{2} \\ & \bullet^{7}\left(2-\frac{2^{2}}{2}\right)-(0)=0 \\ & .80-\left(-\frac{4}{3}\right)=\frac{4}{3} \text { or } \frac{4}{3}-0 \\ & \cdot \frac{1}{2} \end{aligned}$	4

| Question | Generic scheme | Max
 mark |
| :---: | :---: | :---: | :---: |

Notes:

IMPORTANT: Notes prefixed by *** may be subject to General Marking Principle (n). If a candidate has been penalised for the error in (a) then they must not be penalised a second time for the same error in (b).
9. ${ }^{* * *} \bullet^{6}$ is not available to candidates who omit ' $d x$ '.
10. In Methods 1 and 2 only, treat the absence of brackets at \bullet^{6} stage as bad form only if the correct integral is obtained at \bullet^{7}.
11. Candidates who have an incorrect expression to integrate at the \bullet^{3} and \bullet^{7} stage due solely to the absence of brackets lose \bullet^{2}, but are awarded \bullet^{6}.
12. Where a candidate differentiates one or more terms at \bullet^{7}, then \bullet^{7}, \bullet^{8} and \bullet^{9} are unavailable.
*** In cases where Note 3 has applied in part (a), \bullet^{7} is lost but \bullet^{8} and $\bullet{ }^{9}$ are available.
13. In Methods 1 and 2 only, accept unsimplified expressions at \bullet^{7} e.g. $x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-x$
14. Do not penalise the inclusion of ' $+c$ '.
15. ${ }^{* * *} \bullet^{8}$ in Methods 1 and 2 and \bullet^{7} in method 3 is only available if there is evidence that the lower limit ' 0 ' has been considered.
16. At the \bullet^{9} stage, the fraction must be consistent with the answers at \bullet^{5} and \bullet^{8} for \bullet to be awarded.
17. Do not penalise errors in substitution of $x=0$ at \bullet^{8} in Method $1 \& 2$ or \bullet^{7} in Method 3 .

Commonly Observed Responses:

Question	Generic scheme		Illustrative scheme		Max mark
12.	- ${ }^{1}$ use laws of - ${ }^{2}$ write in ex ${ }^{3}$ solve for	ogs nential form	- ${ }^{1} \log _{a} 9$ - $a^{\frac{1}{2}}=9$ $\cdot 31$		3
Notes:					
1. $\frac{36}{4}$ must be simplified at \bullet^{1} or \bullet^{2} stage for \bullet^{1} to be awarded. 2. Accept $\log 9$ at \bullet^{1}. 3. • ${ }^{2}$ may be implied by \bullet^{3}.					
Commonly Observed Responses:					
	$\bullet^{1} x$ $\bullet^{2} \sqrt{1}$ $0^{3} x$	Candidate B $\begin{aligned} & \log _{a} 32 \\ & a^{\frac{1}{2}}=32 \end{aligned}$	$\bullet^{1} x$ $\bullet^{2} \boxed{\boxed{ } 1}$ $\cdot^{3 \wedge}$	Candidate C $\log _{a} 9$ $\bullet 1$ $a=9^{\frac{1}{2}}$ $\bullet^{2} x$ $a=3$ $\bullet^{3} \sqrt{2}$	
$\begin{aligned} & \text { Candidate D } \\ & 2 \log _{a} 36-2 \log _{a} 4=1 \\ & \log _{a} 36^{2}-\log _{a} 4^{2}=1 \quad \bullet^{1} \\ & \log _{a} \frac{36^{2}}{4^{2}}=1 \\ & \log _{a} 81=1 \quad \bullet^{2} \checkmark \\ & a=81 \quad \bullet^{3} \checkmark \end{aligned}$					

1. For candidates who differentiate throughout, only \bullet^{1} is available.
2. For candidates who 'integrate the denominator' without attempting to write in integrable form award 0/4.
3. If candidates start to integrate individual terms within the bracket or attempt to expand a bracket no further marks are available.
4. ' $+c$ ' is required for ${ }^{4}$.

Commonly Observed Responses:

Candidate A		Candidate B	
$(5-4 x)^{-\frac{1}{2}}$	- ${ }^{1}$	$(5-4 x)^{\frac{1}{2}}$	${ }^{1} \times$
$\frac{(5-4 x)^{\frac{1}{2}}}{\frac{1}{2}}$	$\bullet^{2} \checkmark 0^{3 \wedge}$	$\frac{(5-4 x)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{(-4)}$	$\bullet^{2} \sqrt{1} \cdot{ }^{3}$
$2(5-4 x)^{\frac{1}{2}}+c$	-4 $\sqrt{2}$	$-\frac{(5-4 x)^{\frac{3}{2}}}{6}+c$	$\cdot 4 \longdiv { 1 }$
Candidate C		Candidate D	
Differentiate in part:		Differentiate in part:	
$(5-4 x)^{-\frac{1}{2}}$	-1 \downarrow	$(5-4 x)^{-\frac{1}{2}}$	$\bullet \checkmark$
$-\frac{1}{2}(5-4 x)^{-\frac{3}{2}} \times \frac{1}{(-4)}$	$\bullet^{2} \times \quad 0^{3} \downarrow$	$\frac{(5-4 x)^{\frac{1}{2}}}{1} \times(-4)$	$\bullet^{2} \checkmark 0^{3} x$
$\frac{1}{8}(5-4 x)^{-\frac{3}{2}}+c$	$\cdot^{4} \sqrt{1}$	$\begin{gathered} \overline{2} \\ -8(5-4 x)^{\frac{1}{2}}+c \end{gathered}$	$\bullet{ }^{4}$

1. Accept $k\left(\sin x^{\circ} \cos a^{\circ}-\cos x^{\circ} \sin a^{\circ}\right)$ for \bullet^{1}. Treat $k \sin x^{\circ} \cos a^{\circ}-\cos x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. Do not penalise the omission of degree signs.
3. $2 \sin x^{\circ} \cos a^{\circ}-2 \cos x^{\circ} \sin a^{\circ}$ or $2\left(\sin x^{\circ} \cos a^{\circ}-\cos x^{\circ} \sin a^{\circ}\right)$ is acceptable for \bullet^{1} and \bullet^{3}.
4. In the calculation of $k=2$, do not penalise the appearance of -1 .
5. Accept $k \cos a^{\circ}=\sqrt{3},-k \sin a^{\circ}=-1$ for \bullet^{2}.
6. \bullet^{2} is not available for $k \cos x^{\circ}=\sqrt{3}, k \sin x^{\circ}=1$, however, \bullet^{4} is still available.
7. \bullet^{3} is only available for a single value of $k, k>0$.
8. \cdot^{3} is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without simplifying at any stage.
9. \bullet^{4} is not available for a value of a given in radians.
10. Candidates may use any form of the wave equation for \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted in the form $k \sin (x-a)^{\circ}$
11. Evidence for \bullet^{4} may only appear as a label on the graph in part (b).

Commonly Observed Responses:

Responses with missing information in working:

Candidate A	.$^{\wedge}$	Candidate B	
		$k \sin x \cos a$	$-k \cos x \sin a \bullet^{1} \checkmark$
$2 \cos a=\sqrt{3}$			
$2 \sin a=1$	$\bullet^{2} \sqrt{ }{ }^{3}$	$\cos a=\sqrt{3}$	
1		$\sin a=1$	$\bullet^{2} x$
$\tan a=\frac{1}{\sqrt{3}}, a=30$		$\tan a=1$	
$2 \sin (x-30)^{\circ}$	- ${ }^{4}$	$a=30 \frac{\sqrt{3}}{}$	Not consistent with equations at \bullet^{2}.
		$2 \sin (x-30)^{\circ}$	$\bullet^{3} \checkmark \bullet^{4} x$

Question		Generic scheme	Illustrative scheme	Max mark
	(a)	- 1 state value of a - ${ }^{2}$ state value of b	$\begin{aligned} & \bullet \quad-5 \\ & \bullet \quad 3 \end{aligned}$	2
Notes:				
Commonly Observed Responses:				

Question		Generic scheme		Illustrative Scheme	Max Mark
15.	(b)	\bullet^{3} state value of integral	$\bullet \bullet^{3} 10$	1	

Notes:

1. Candidates answer at (b) must be consistent with the value of b obtained in (a).
2. In parts (b) and (c), candidates who have 10 and -6 accompanied by working, the working must be checked to ensure that no errors have occurred prior to the correct answer appearing.

Commonly Observed Responses:

Candidate A

From (a)
$a=-3 \cdot{ }^{1} \mathrm{x}$
$b=5 \quad \bullet^{2} x$
$\int h(x) d x=14 \cdot \sqrt{\boxed{ } 1}$

$\left.$| Question | | Generic scheme | | Illustrative scheme | |
| :--- | :--- | :--- | :--- | :--- | :---: | | Max |
| :---: |
| mark | \right\rvert\,

[END OF MARKING INSTRUCTIONS]

2017 Mathematics Paper 2

Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (\mathbf{j}).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

This is a transcription error and so the mark is not awarded.	$x^{2}+5 x+7=9 x+4$
Eased as no longer a solution of a quadratic equation so mark is not awarded.	$\begin{aligned} -4 x+3 & =0 \\ x & =1 \end{aligned}$
Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.	$\begin{aligned} x-4 x+3 & =0 \\ (x-3)(x-1) & =0 \\ x & =1 \text { or } 3 \end{aligned}$

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
\cdot{ }^{5} & x=2 & x=-4 \\
\cdot 6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{\cdot 5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Question		Generic scheme	Illustrative scheme	Max mark
1.	(a)	-1 find mid-point of BC - ${ }^{2}$ calculate gradient of BC - ${ }^{3}$ use property of perpendicular lines - ${ }^{4}$ determine equation of line in a simplified form	$\begin{array}{ll} \bullet & (6,-1) \\ \bullet & -\frac{2}{6} \\ \cdot{ }^{3} & 3 \\ \bullet & y=3 x-19 \end{array}$	4

Notes:

1. \bullet^{4} is only available as a consequence of using a perpendicular gradient and a midpoint.
2. The gradient of the perpendicular bisector must appear in simplified form at \bullet^{3} or \bullet^{4} stage for \bullet^{3} to be awarded.
3. At \bullet^{4}, accept $3 x-y-19=0,3 x-y=19$ or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark
1. (b)	\bullet^{5} use $m=\tan \theta$	$\bullet^{5} 1$	
Notes:	$\mathbf{0}$ determine equation of AB	$\bullet^{6} y=x-3$	
4. At \bullet^{6}, accept $y-x+3=0, y-x=-3$ or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses:			

Question	Generic scheme	Illustrative scheme	Max mark
1. (c)	\bullet^{7} find x or y coordinate	$\bullet^{7} x=8$ or $y=5$	
\bullet^{8} find remaining coordinate	$\bullet^{8} y=5$ or $x=8$	$\mathbf{2}$	
Notes:			

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
2.	(a)	Method 1 - ${ }^{1}$ know to use $x=1$ in synthetic division -2 complete division, interpret result and state conclusion	Method 1 $\bullet 11$ 2 -5 1 2 2 1 2 -5 1 2 2 -3 -2 2 -3 -2 0 Remainder $=0 \quad \therefore(x-1)$ is a factor	2
		Method 2 - ${ }^{1}$ know to substitute $x=1$ ${ }^{2}$ 2 complete evaluation, interpret result and state conclusion	Method 2 - ${ }^{1} 2(1)^{3}-5(1)^{2}+(1)+2$ -2 $=0 \therefore(x-1)$ is a factor	2
		Method 3 - ${ }^{1}$ start long division and find leading term in quotient -2 complete division, interpret result and state conclusion	Method 3 -1 $(x - 1) \longdiv { 2 x ^ { 2 } } \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2 }$ \bullet^{2} $\begin{aligned} & \begin{array}{l} (x-1) \\ \begin{array}{l} \frac{2 x^{2}-3 x-2}{2 x^{3}-5 x^{2}+x+2} \\ \frac{2 x^{3}-2 x^{2}}{-3 x^{2}+x} \\ \frac{-3 x^{2}+3 x}{-2 x+2} \\ \frac{-2 x+2}{0} \end{array} \\ \text { remainder }=0 \quad \therefore(x-1) \text { is a } \\ \text { factor } \end{array} \end{aligned}$	
				2

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. Communication at \bullet^{2} must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before \bullet^{2} can be awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(1)=0$ so $(x-1)$ is a factor'
- 'since remainder $=0$, it is a factor'
- the 0 from any method linked to the word 'factor' by e.g. 'so', 'hence', ' \therefore ', ' \rightarrow ', ' \Rightarrow '

3. Do not accept any of the following for \bullet^{2} :

- double underlining the zero or boxing the zero without comment
- ' $x=-1$ is a factor', ' $(x+1)$ is a factor', ' $(x+1)$ is a root', ' $x=1$ is a root', ' $(x-1)$ is a root' ' $x=-1$ is a root'.
- the word 'factor' only with no link

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)	- ${ }^{3}$ state quadratic factor -4 find remaining factors - ${ }^{5}$ state solution	-3 $2 x^{2}-3 x-2$ $\cdot{ }^{4}(2 x+1)$ and $(x-2)$. ${ }^{5} \quad x=-\frac{1}{2}, 1,2$	3

4. The appearance of " $=0$ " is not required for \bullet^{5} to be awarded.
5. Candidates who identify a different initial factor and subsequent quadratic factor can gain all available marks.
6. \bullet^{5} is only available as a result of a valid strategy at \bullet^{3} and \bullet^{4}.
7. Accept $\left(-\frac{1}{2}, 0\right),(1,0),(2,0)$ for \bullet^{5}.

Commonly Observed Responses:

Notes:

1. At \bullet^{3} the quadratic must lead to two distinct real roots for \bullet^{4} and \bullet^{5} to be available.
2. $\bullet^{\mathbf{2}}$ is only available if ' $=0$ ' appears at \bullet^{2} or \bullet^{3} stage.
3. If a candidate arrives at an equation which is not a quadratic at \bullet^{2} stage, then \bullet^{3}, \bullet^{4} and \bullet^{5} are not available
4. At \bullet^{3} do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10 .
5. \bullet^{3} is available for substituting correctly into the quadratic formula.
6. \bullet^{4} and ${ }^{5}$ may be marked either horizontally or vertically.
7. For candidates who identify both solutions by inspection, full marks may be awarded provided they justify that their points lie on both the line and the circle. Candidates who identify both solutions, but justify only one gain 2 out of 5 .

Commonly Observed Responses:

Candidate A	
$(x-2)^{2}+(3 x-1)^{2}=25$	$\bullet{ }^{1}$
$10 x^{2}-10 x=20$	$\bullet^{2} \times$
$10 x(x-1)=20$	$\bullet^{3} \sqrt{ } 2$
$x=2 \quad x=3$	$\bullet x$
$y=6 \quad y=9$	$\cdot 5 \sqrt{ } 2$

Candidate B

Candidates who substitute into the circle equation only
$-1 \checkmark$
$\cdot{ }^{2} \checkmark$
$\cdot{ }^{3} \checkmark$
$\bullet 4$
$\begin{array}{ll}\text { Sub } x=2 & \text { Sub } x=-1 \\ y^{2}-2 y-24=0 & y^{2}-2 y-15=0 \\ (y-6)(y+4)=0 & (y+3)(y-5)=0 \\ y=6 \text { or } y=-4 & y=-3 \text { or } y=5 \\ (2,6)(-1,-3) \cdot{ }^{5} x\end{array}$

Question		Generic scheme		Illustrative scheme	Max mark
4.	(a)	- identify - ${ }^{2}$ complet - ${ }^{3}$ process required		Method 1 - ${ }^{1} 3\left(x^{2}+8 x \ldots \ldots\right.$.... stated or implied by \bullet^{2} - ${ }^{2} 3(x+4)^{2} \ldots \ldots$ - ${ }^{3} 3(x+4)^{2}+2$	3
		- ${ }^{1}$ expand - ${ }^{2}$ equate - ${ }^{3}$ process in requir		Method 2 - $a x^{2}+2 a b x+a b^{2}+c$ $\bullet^{2} \quad a=3,2 a b=24, a b^{2}+c=50$ -3 $3(x+4)^{2}+2$	3
Notes:					
1. $3(x+4)^{2}+2$ with no working gains \bullet^{1} and \bullet^{2} only; however, see Candidate G . 2. \bullet^{3} is only available for a calculation involving both multiplication and subtraction of integers.					
Commonly Observed Responses:					
Candidate A $\begin{aligned} & 3\left(x^{2}+8 x+\frac{50}{3}\right) \\ & 3\left(x^{2}+8 x+16-16+\frac{50}{3}\right) \end{aligned}$ - ${ }^{2 \wedge}$ further working is required			Candidate B$\begin{aligned} 3 x^{2}+24 x+50 & =3(x+8)^{2}-64+50 & & \bullet \bullet^{1} \times \bullet^{2} x \\ & =3(x+8)^{2}-14 & & \bullet^{3} \sqrt{ } 2 \end{aligned}$		
Candidate C$\begin{array}{ll} a x^{2}+2 a b x+a b^{2}+c & \bullet^{1} \checkmark \\ a=3,2 a b=24, \quad b^{2}+c=50 & \bullet^{2} x \\ a=3, b=4, \quad c=34 & \\ 3(x+4)^{2}+34 & \bullet{ }^{3} \sqrt{ } 1 \end{array}$				ndidate D $\begin{aligned} & \left.\left(x^{2}+24 x\right)+50\right) \\ & \left.(x+12)^{2}-144\right)+50 \\ & x+12)^{2}-382 \end{aligned}$	1 1

Question Generic scheme	Illustrative scheme $\begin{array}{c}\text { Max } \\ \text { mark }\end{array}$
Candidate E $\begin{aligned} & \begin{array}{l} a(x+b)^{2}+c=a x^{2}+2 a b x+a b^{2}+c \\ a=3,2 a b=24, a b^{2}+c=50 \\ b=4, c=2 \end{array} \\ & \begin{array}{l} \begin{array}{l} \bullet^{3} \text { is awarded as all } \\ \text { working relates to } \\ \text { completed square } \\ \text { form } \end{array} \\ \hline \end{array} \\ & \hline \end{aligned}$	Candidate F $\begin{aligned} & \begin{array}{l} a x^{2}+2 a b x+a b^{2}+c \\ a=3, \\ b=4, \quad 2 a b=24, \quad a b^{2}+c=50 \end{array} \\ & \quad \begin{array}{l} \bullet^{3} \text { is lost as no } \\ \text { reference is made to } \\ \text { completed square } \\ \text { form } \end{array} \\ & \hline \end{aligned}$
Candidate G $3(x+4)^{2}+2$ Check: $3\left(x^{2}+8 x+16\right)+2$ $\begin{aligned} & =3 x^{2}+24 x+48+2 \\ & =3 x^{2}+24 x+50 \end{aligned}$ Award 3/3	Candidate H $\begin{aligned} & 3 x^{2}+24 x+50 \\ & =3(x+4)^{2}-16+50 \\ & =3(x+4)^{2}+34 \end{aligned}$

4. Do not penalise $(x+4)^{2}>0$ or the omission of $f^{\prime}(x)$ at \bullet^{6} in Method 1 .
5. Responses in part (c) must be consistent with working in parts (a) and (b) for \bullet^{6} and \bullet^{7} to be available.
6. Where erroneous working leads to a candidate considering a function which is not always strictly increasing, only 0^{6} is available.
7. At \bullet^{6} communication should be explicitly in terms of the given function. Do not accept statements such as "(something) ${ }^{2} \geq 0$ ", "something squared ≥ 0 ". However, \bullet^{7} is still available.

Commonly Observed Responses:

Candidate I

$f^{\prime}(x)=3(x+4)^{2}+2$
$3(x+4)^{2}+2>0 \Rightarrow$ strictly increasing.
Award 1 out of 2

Candidate J

Since $3 x^{2}+24 x+50=3(x+4)^{2}+\frac{166}{50}$
and $(x+4)^{2}$ is >0 for all x then
$3(x+4)^{2}+\frac{166}{50}>0$ for all x.
Hence the curve is strictly increasing for all values of x. $\bullet^{6} \checkmark \cdot 7 \sqrt{ } 1$

Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	-1 identify pathway \bullet^{2} state $\overrightarrow{\mathrm{PQ}}$	- ${ }^{1} \overrightarrow{P R}+\overrightarrow{R Q}$ stated or implied by •2 -2 $-3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$	2
Notes:				
1. Award • ${ }^{1}(9 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k})+(-12 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k})$. 2. Candidates who choose to work with column vectors and leave their answer in the form $\left(\begin{array}{r} -3 \\ -4 \\ 5 \end{array}\right) \text { cannot gain } \bullet^{2}$ 3. \bullet^{2} is not available for simply adding or subtracting vectors within an invalid strategy. 4. Where candidates choose specific points consistent with the given vectors, only \bullet^{1} and \bullet^{4} are available. However, should the statement 'without loss of generality' precede the selected points then marks $\bullet^{1}, \bullet^{2}, \bullet^{3}$ and \bullet^{4} are all available.				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
5.	(b)	${ }^{3}{ }^{3}$ interpret ratio -4 identify pathway and demonstrate result	- $\frac{2}{3}$ or $\frac{1}{3}$ - ${ }^{4} \overrightarrow{\mathrm{PR}}+\frac{2}{3} \overrightarrow{\mathrm{RQ}}$ or $\overrightarrow{\mathrm{PQ}}+\frac{1}{3} \overrightarrow{\mathrm{QR}}$ leading to $\mathbf{i}-\mathbf{j}+4 \mathbf{k}$	2

Notes:

5. This is a 'show that' question. Candidates who choose to work with column vectors must write their final answer in the required form to gain $\bullet^{4} \cdot\left(\begin{array}{r}1 \\ -1 \\ 4\end{array}\right)$ does not gain \bullet^{4}.
6. Beware of candidates who fudge their working between \bullet^{3} and \bullet^{4}.

Question Generic scheme	Illustrative scheme $\quad \begin{gathered}\text { Max } \\ \text { mark }\end{gathered}$
Commonly Observed Responses:	
Candidate A - legitimate use of the section formula $\begin{aligned} \overrightarrow{\mathrm{PS}} & =\frac{n \overrightarrow{\mathrm{PQ}}+m \overrightarrow{\mathrm{PR}}}{m+n} \\ \overrightarrow{\mathrm{PS}} & =\frac{2 \overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{PR}}}{3} \cdot{ }^{3} \\ \overrightarrow{\mathrm{PS}} & =\frac{2\left(\begin{array}{c} -3 \\ -4 \\ 5 \end{array}\right)}{3}+\frac{\left(\begin{array}{l} 9 \\ 5 \\ 2 \end{array}\right)}{3} \\ & =\left(\begin{array}{c} -2 \\ -8 / 3 \\ 10 / 3 \end{array}\right)+\left(\begin{array}{c} 3 \\ 5 / 3 \\ 2 / 3 \end{array}\right) \\ & =\left(\begin{array}{c} 1 \\ -1 \\ 4 \end{array}\right) \end{aligned}$ $\overrightarrow{P S}=\mathbf{i}-\mathbf{j}+4 \mathbf{k} \quad \bullet^{4} \downarrow$	Candidate B - BEWARE - treating P as the origin $\begin{aligned} & 2 \overrightarrow{Q S}=\overrightarrow{\mathrm{SR}} \\ & 3 \mathrm{~s}=2 \mathrm{q}+\mathbf{r} \\ & 3 \mathrm{~s}=2\left(\begin{array}{c} -3 \\ -4 \\ 5 \end{array}\right)+\left(\begin{array}{c} 9 \\ 5 \\ 2 \end{array}\right) \\ & \mathbf{s}=\mathbf{i}-\mathbf{j}+4 \mathbf{k} \quad \bullet^{4} \boldsymbol{x} \end{aligned}$

Question		Generic scheme	Illustrative scheme	Max mark
5.	(c)	Method 1 $\cdot{ }^{5}$ evaluate $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PS}}$ - ${ }^{6}$ evaluate $\|\overrightarrow{\mathrm{PQ}}\|$ $\bullet{ }^{7}$ evaluate $\|\overrightarrow{\mathrm{PS}}\|$ - 8 use scalar product - ${ }^{9}$ calculate angle	Method 1 - ${ }^{5} \overrightarrow{P Q} \cdot \overrightarrow{P S}=21$ - $\quad\|\overrightarrow{\mathrm{PQ}}\|=\sqrt{50}$ $\bullet \quad\|\overrightarrow{\mathrm{PS}}\|=\sqrt{18}$ $.^{8} \quad \cos \mathrm{QPS}=\frac{21}{\sqrt{50} \times \sqrt{18}}$ ${ }^{9} 45.6^{\circ}$ or 0.795 radians	5
		Method 2 - ${ }^{5}$ evaluate $\|\overrightarrow{Q S}\|$ - ${ }^{6}$ evaluate $\|\overrightarrow{P Q}\|$ $\bullet{ }^{7}$ evaluate $\|\overrightarrow{\mathrm{PS}}\|$ $\bullet 8$ use cosine rule - ${ }^{9}$ calculate angle	Method 2 - ${ }^{5}\|\overrightarrow{Q S}\|=\sqrt{26}$ - $\quad\|\overrightarrow{\mathrm{PQ}}\|=\sqrt{50}$ $\bullet{ }^{7}\|\overrightarrow{\mathrm{PS}}\|=\sqrt{18}$ - $\quad \cos \mathrm{QPS}=\frac{(\sqrt{50})^{2}+(\sqrt{18})^{2}-(\sqrt{26})^{2}}{2 \times \sqrt{50} \times \sqrt{18}}$ - 945.6° or 0.795 radians	5

7. For candidates who use $\overline{\text { PS }}$ not equal to $\mathbf{i}-\mathbf{j}+4 \mathbf{k} \bullet^{5}$ is not available in Method 1 or \bullet^{7} in Method 2.
8. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. However, $\sqrt{1^{2}-1^{2}+4^{2}}$ leading to $\sqrt{16}$ indicates an invalid method for calculating the magnitude. No mark can be awarded for any magnitude arrived at using an invalid method.
9. \bullet^{8} is not available to candidates who simply state the formula $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$. However, $\cos \theta=\frac{\overline{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PS}}}{|\overrightarrow{\mathrm{PQ}}| \times \overline{\mathrm{PS}} \mid}$ or $\cos \theta=\frac{21}{\sqrt{50} \times \sqrt{18}}$ is acceptable. Similarly for Method 2.
10. Accept answers which round to 46° or 0.8 radians.
11. Do not penalise the omission or incorrect use of units.
12. \bullet^{9} is only available as a result of using a valid strategy.
13. \bullet^{9} is only available for a single angle.
14. For a correct answer with no working award $0 / 5$.

Question Generic scheme	Illustrative scheme $\begin{array}{c}\text { Max } \\ \text { mark }\end{array}$
Commonly Observed Responses:	
Candidate C - Calculating wrong angle $\begin{array}{ll} \overrightarrow{\mathrm{QP}} \overrightarrow{\mathrm{QS}}=29 & \bullet^{5} x \\ \|\overrightarrow{\mathrm{QP}}\|=\sqrt{50} & \cdot 6 \sqrt{1} \\ \|\overrightarrow{\mathrm{QS}}\|=\sqrt{26} & \cdot{ }^{7} \sqrt{ } 1 \\ \cos P \hat{S}=\frac{29}{\sqrt{50} \times \sqrt{26}} & \bullet^{8} \sqrt{ } 1 \\ \mathrm{PQQ}=36 \cdot 5 & \bullet^{9} \times \quad \begin{array}{l} \text { strategy } \\ \text { incomplete } \end{array} \end{array}$ For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.	Candidate D-Calculating wrong angle For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.
Candidate E From (a) $\overrightarrow{P Q}=-21 i-14 \mathbf{j}+k$	Candidate F From (a) $\overrightarrow{P Q}=\mathbf{2 1 i}+\mathbf{1 4 j}-\mathbf{k}$
Candidate G From (b) $\overrightarrow{\mathrm{PS}}=-4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$	

1. \bullet^{1} is not available for simply stating $\cos 2 x=1-2 \sin ^{2} x$ with no further working.
2. In the event of $\cos ^{2} x^{\circ}-\sin ^{2} x^{\circ}$ or $2 \cos ^{2} x^{\circ}-1$ being substituted for $\cos 2 x, \bullet^{1}$ cannot be awarded until the equation reduces to a quadratic in $\sin x^{\circ}$.
3. Substituting $1-2 \sin ^{2} A$ or $1-2 \sin ^{2} \alpha$ for $\cos 2 x$ at \bullet^{1} stage should be treated as bad form provided the equation is written in terms of x at \bullet^{2} stage. Otherwise, \bullet^{1} is not available.
4. ' $=0$ ' must appear by \bullet^{3} stage for \bullet^{2} to be awarded. However, for candidates using the quadratic formula to solve the equation, ' $=0$ ' must appear at \bullet^{2} stage for \bullet^{2} to be awarded.
5. $5 \sin x+4 \sin ^{2} x-6=0$ does not gain \bullet^{2} unless \bullet^{3} is awarded.
6. $\sin x=\frac{-5 \pm \sqrt{121}}{8}$ gains \bullet^{3}.
7. Candidates may express the equation obtained at \bullet^{2} in the form $4 s^{2}+5 s-6=0$ or $4 x^{2}+5 x-6=0$. In these cases, award \bullet^{3} for $(4 \mathrm{~s}-3)(\mathrm{s}+2)=0$ or $(4 x-3)(x+2)=0$. However, \bullet^{4} is only available if $\sin x$ appears explicitly at this stage.
8. $\bullet{ }^{4}$ and \bullet^{5} are only available as a consequence of solving a quadratic equation.
9. \bullet^{3}, \bullet^{4} and \bullet^{5} are not available for any attempt to solve a quadratic equation written in the form $a x^{2}+b x=c$.
10. \bullet^{5} is not available to candidates who work in degrees and do not convert their solutions into radian measure.
11. Accept answers which round to 0.85 and 2.3 at $\bullet^{5} \mathrm{eg} \frac{49 \pi}{180}, \frac{131 \pi}{180}$.
12. Answers written as decimals should be rounded to no fewer than 2 significant figures.
13. Do not penalise additional solutions at \bullet^{5}.

Question Generic scheme	Illustrative scheme	Max mark
Commonly Observed Responses:		
Candidate A $\begin{aligned} & \bullet 1 \checkmark \bullet^{2} \checkmark \\ & (4 s-3)(s+2)=0 \\ & s=\frac{3}{4}, \mathrm{~s}=-2 \\ & x=0 \cdot 848,2 \cdot 29 \end{aligned}$	Candidate B $\begin{aligned} & \bullet 1 \\ & 4 \sin ^{2} x+5 \sin x-6=0 \\ & 9 \sin x-6=0 \\ & \sin x=\frac{2}{3} \\ & x=0.730,2.41 \end{aligned}$	$\bullet^{2} \checkmark$ $\bullet^{3} x$ -4 $\sqrt{2}$ $.5 \sqrt{ } 2$
Candidate C $\begin{array}{ll} 5 \sin x-4=2\left(1-2 \sin ^{2} x\right) & \bullet^{1} \checkmark \\ 4 \sin ^{2} x+5 \sin x=6 & \bullet^{2} \sqrt{\sqrt{2}} \\ \sin x(4 \sin x+5)=6 & \bullet^{3} \sqrt{\sqrt{2}} \\ \sin x=6,4 \sin x+5=6 & \bullet^{4} x \\ \text { no solution, } \sin x=\frac{1}{4} & \\ x=0 \cdot 253,2 \cdot 89 & \bullet^{5} x \end{array}$	Candidate D $\begin{aligned} & 5 \sin x-4=2\left(1-2 \sin ^{2} x\right) \\ & 4 \sin ^{2} x+5 \sin x-6=0 \\ & 4 \sin ^{2} x+5 \sin x=6 \\ & \sin x(4 \sin x+5)=6 \\ & \sin x=6,4 \sin x+5=6 \\ & \text { no solution, } \sin x=\frac{1}{4} \\ & \\ & x=0 \cdot 253,2 \cdot 89 \end{aligned}$	${ }^{1} \checkmark$ $\bullet^{2} \checkmark$ $\cdot 3^{3}$ ${ }^{4} \times$
Candidate E-reading $\cos 2 x$ as $\cos ^{2} x$ $\begin{array}{ll} 5 \sin x-4=2 \cos ^{2} x & \bullet^{1} x \\ 5 \sin x-4=2\left(1-\sin ^{2} x\right) & \\ 2 \sin ^{2} x+5 \sin x-6=0 & \bullet^{2} \boxed{ } 1 \\ \sin x=\frac{-5 \pm \sqrt{73}}{4} & \bullet^{3} \boxed{ } \\ \sin x=0 \cdot 886, \sin x=-3 \cdot 386 & \bullet^{4} \sqrt{ } \\ x=1 \cdot 08,2 \cdot 05 & \bullet^{5} \frac{\boxed{ }}{} \end{array}$		

Question		Generic scheme	Illustrative scheme	Max mark
7.	(a)	- ${ }^{1}$ write in differentiable form - ${ }^{2}$ differentiate one term .3 complete differentiation and equate to zero - ${ }^{4}$ solve for x	-1 $\ldots-2 x^{\frac{3}{2}}$ stated or implied .2 $\frac{d y}{d x}=6 \ldots$ or $\frac{d y}{d x}=\ldots-3 x^{\frac{1}{2}} \ldots$ $.^{3} \ldots-3 x^{\frac{1}{2}}=0$ or $6 \ldots=0$ - ${ }^{4} \quad x=4$	4

1. For candidates who do not differentiate a term involving a fractional index, either \bullet^{2} or \bullet^{3} is available but not both.
2. \bullet^{4} is available only as a consequence of solving an equation involving a fractional power of x.
3. For candidates who integrate one or other of the terms \bullet^{4} is unavailable.

Commonly Observed Responses:

Candidate A - differentiating incorrectly
$y=6 x-2 x^{\frac{3}{2}}$
$\frac{d y}{d x}=6-3 x^{\frac{5}{2}} \quad \bullet \checkmark$
$6-3 x^{\frac{5}{2}}=0$
$x=1.32$
.$^{3} x$
$\cdot 4 \sqrt{ } 1$

Candidate B - integrating the second term

$y=6 x-2 x^{\frac{3}{2}}$	$\bullet \bullet^{1} \checkmark$
$\frac{d y}{d x}=6-\frac{4}{5} x^{\frac{5}{2}}$	$\bullet^{2} \checkmark$
$6-\frac{4}{5} x^{\frac{5}{2}}=0$	$\bullet^{3} \star$
$x=2 \cdot 24$	$\bullet^{4} \star$

Question		Generic scheme	Illustrative scheme	Max mark
7.	(b)	$\cdot{ }^{5}$ evaluate y at stationary point - consider value of y at end points ${ }^{-7}$ state greatest and least values	${ }^{5} 8$ - 64 and 0 ${ }^{-7}$ greatest 8 , least 0 stated explicitly	3

Notes:

4. The only valid approach to finding the stationary point is via differentiation. A numerical approach can only gain \bullet^{6}.
5. \bullet^{7} is not available to candidates who do not consider both end points.
6. Vertical marking is not applicable to \bullet^{6} and \bullet^{7}.
7. Ignore any nature table which may appear in a candidate's solution; however, the appearance of $(4,8)$ at a nature table is sufficient for \bullet^{5}.
8. Greatest $(4,8)$; least $(9,0)$ does not gain \bullet^{7}.
9. \bullet^{5} and \bullet^{7} are not available for evaluating y at a value of x, obtained at \bullet^{4} stage, which lies outwith the interval $1 \leq x \leq 9$.
10. For candidates who only evaluate the derivative, \bullet^{5}, \bullet^{6} and \bullet^{7} are not available.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	\bullet 1 find expression for u_{1} $\bullet^{1} 5 k-20$ \bullet^{2} find expression for u_{2} and express in the correct form	$\bullet^{2} u_{2}=k(5 k-20)-20$ leading to $u_{2}=5 k^{2}-20 k-20$	
Notes:				

Question		Generic scheme	Illustrative scheme	Max mark
8.	(b)	- ${ }^{3}$ interpret information -4 express inequality in standard quadratic form - ${ }^{5}$ determine zeros of quadratic expression -6 state range with justification	- $5 k^{2}-20 k-20<5$ - $45 k^{2}-20 k-25<0$ - ${ }^{5}-1,5$ - ${ }^{6}-1<k<5$ with eg sketch or table of signs	4

1. Candidates who work with an equation from the outset lose \bullet^{3} and \bullet^{4}. However, \bullet^{5} and \bullet are still available.
2. At \bullet^{5} do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequation by 5 .
3. \bullet^{4} and \bullet^{5} are only available to candidates who arrive at a quadratic expression at \bullet^{3}.
4. At ${ }^{6}$ accept " $k>-1$ and $k<5$ " or " $k>-1, k<5$ " together with the required justification.
5. For a trial and error approach award 0/4.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
9.		Method 1 - ${ }^{1}$ state linear equation -2 introduce logs \bullet^{3} use laws of logs - ${ }^{4}$ use laws of logs $\cdot{ }^{5}$ state k and n	Method 1 - ${ }^{1} \log _{2} y=\frac{1}{4} \log _{2} x+3$ $\bullet \log _{2} y=\frac{1}{4} \log _{2} x+3 \log _{2} 2$ - $\log _{2} y=\log _{2} x^{\frac{1}{4}}+\log _{2} 2^{3}$ $\cdot{ }^{4} \log _{2} y=\log _{2} 2^{3} x^{\frac{1}{4}}$. $5 k=8, n=\frac{1}{4} \quad$ or $y=8 x^{\frac{1}{4}}$	5
		Method 2 -1 state linear equation \bullet^{2} use laws of logs \bullet^{3} use laws of logs -4 use laws of logs - ${ }^{5}$ state k and n	Method 2 - ${ }^{1} \log _{2} y=\frac{1}{4} \log _{2} x+3$ - $\log _{2} y=\log _{2} x^{\frac{1}{4}}+3$ - ${ }^{3} \log _{2} \frac{y}{x^{\frac{1}{4}}}=3$ - ${ }^{4} \frac{y}{x^{\frac{1}{4}}}=2^{3}$ $\cdot{ }^{5} k=8, n=\frac{1}{4} \quad$ or $y=8 x^{\frac{1}{4}}$	5

Question	Generic Scheme	Illustrative Scheme	Max Mark
	Method 3 - ${ }^{1}$ introduce logs to $y=k x^{n}$ - ${ }^{2}$ use laws of logs - ${ }^{3}$ interpret intercept - ${ }^{4}$ use laws of logs - ${ }^{5}$ interpret gradient	Method 3 The equations at \bullet^{1}, \bullet^{2} and \bullet^{3} must be stated explicitly. -1 $\log _{2} y=\log _{2} k x^{n}$ - $\log _{2} y=n \log _{2} x+\log _{2} k$ - ${ }^{3} \log _{2} k=3$ -4 $k=8$ - $5 \quad n=\frac{1}{4}$	5
	Method 4 - ${ }^{1}$ interpret point on log graph - ${ }^{2}$ convert from log to exp. form - ${ }^{3}$ interpret point and convert - ${ }^{4}$ substitute into $y=k x^{n}$ and evaluate k - ${ }^{5}$ substitute other point into $y=k x^{n}$ and evaluate n	Method 4 $\cdot{ }^{1} \log _{2} x=-12$ and $\log _{2} y=0$ $\bullet^{2} \quad x=2^{-12}$ and $y=2^{0}$ $\bullet^{3} \log _{2} x=0, \quad \log _{2} y=3$ $x=1, y=2^{3}$ $\bullet^{4} \quad 2^{3}=k \times 1^{n} \Rightarrow k=8$ $\cdot{ }^{5}$ $\begin{aligned} & 2^{0}=2^{3} \times 2^{-12 n} \\ & \Rightarrow 3-12 n=0 \\ & \Rightarrow n=\frac{1}{4} \end{aligned}$	5

Notes:

1. Markers must not pick and choose between methods. Identify the method which best matches the candidates approach.
2. Treat the omission of base 2 as bad form at \bullet^{1} and \bullet^{3} in Method 1 , at \bullet^{1} and \bullet^{2} for Method 2 and Method 3, and at \bullet^{1} in Method 4.
3. ' $m=\frac{1}{4}$ ' or ' gradient $=\frac{1}{4}$ ' does not gain \bullet^{5} in Method 3 .
4. Accept 8 in lieu of 2^{3} throughout.
5. In Method 4 candidates may use $(0,3)$ for \bullet^{1} and \bullet^{2} followed by $(-12,0)$ for \bullet^{3}.

Question	Generic scheme	Illustrative scheme	Max mark
Commonly Observed Responses:			
Candidate A With no workin Method 3: $\begin{aligned} & k=8 \\ & n=\frac{1}{4} \end{aligned}$ Award 2/5	$\cdot{ }^{4} \checkmark$ $\cdot^{5} \downarrow$	Candidate B With no working. Method 3: $\begin{array}{ll} n=8 & \bullet^{4} x \\ k=\frac{1}{4} & \bullet^{5} x \end{array}$ Award 0/5	
Candidate C Method 3: $\log _{2} k=3$ $\begin{aligned} & k=8 \\ & n=\frac{1}{4} \end{aligned}$ Award 3/5	$\cdot 3 \checkmark$ $\cdot{ }^{4} \checkmark$ $\cdot{ }^{5} \checkmark$	Candidate D Method 2: $\begin{aligned} & \log _{2} y=\frac{1}{4} \log _{2} x+3 \\ & \log _{2} y=\log _{2} x^{\frac{1}{4}}+3 \\ & y=x^{\frac{1}{4}}+3 \\ & k=1, n=\frac{1}{4} \end{aligned}$ Award 2/5	
Candidate E Method 2: $\begin{aligned} & y=\frac{1}{4} x+3 \\ & \log _{2} y=\frac{1}{4} \log _{2} \\ & \log _{2} y=\log _{2} x^{2} \\ & \frac{y}{x^{\frac{1}{4}}}=3 \\ & y=3 x^{\frac{1}{4}} \end{aligned}$ Award 3/5	$\bullet^{1} \downarrow$ $\cdot{ }^{2} \checkmark$ $\cdot^{3 \wedge} \quad 0^{4} x$ $\cdot{ }^{5} \sqrt{ } 1$		

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	Method 1 -1 calculate m_{AB} -2 calculate m_{BC} - 3 interpret result and state conclusion	Method 1 - $m_{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ see Note 1 - $2 m_{\mathrm{BC}}=\frac{5}{15}=\frac{1}{3}$ $\bullet^{3} \quad \ldots \Rightarrow A B$ and $B C$ are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
		Method 2 - ${ }^{1}$ calculate an appropriate vector e.g. $\overrightarrow{\mathrm{AB}}$ -2 calculate a second vector e.g. $\overrightarrow{B C}$ and compare -3 interpret result and state conclusion	Method 2 -1 $\overrightarrow{\mathrm{AB}}=\binom{9}{3} \quad$ see Note 1 - $2 \overrightarrow{\mathrm{BC}}=\binom{15}{5} \therefore \overrightarrow{\mathrm{AB}}=\frac{3}{5} \overrightarrow{\mathrm{BC}}$ ${ }^{3} \quad \ldots \Rightarrow A B$ and $B C$ are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
		Method 3 -1 calculate $m_{A B}$ -2 find equation of line and substitute point -3 communication	Method 3 - $1 \quad m_{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ -2 eg, $y-1=\frac{1}{3}(x-2)$ leading to $6-1=\frac{1}{3}(17-2)$ - ${ }^{3}$ since C lies on line A, B and C are collinear	
No				

1. At \bullet^{1} and \bullet^{2} stage, candidates may calculate the gradients/vectors using any pair of points.
2. • ${ }^{3}$ can only be awarded if a candidate has stated "parallel", "common point" and "collinear".
3. Candidates who state "points A, B and C are parallel" or " m_{AB} and m_{BC} are parallel" do not gain ${ }^{3}$.

Question		Generic scheme	Illustrative scheme	Max mark
10.	(b)	- ${ }^{4}$ find radius - 5 determine an appropriate ratio -6 find centre ${ }^{-7}$ state equation of circle	${ }^{4} \quad 6 \sqrt{10}$ - ${ }^{5}$ e.g. 2:3 or $\frac{2}{5}$ (using B and C) or $3: 5$ or $\frac{8}{5}$ (using A and C) -6 $(8,3)$ -7 $(x-8)^{2}+(y-3)^{2}=360$	4

Notes:

4. Where the correct centre appears without working \bullet^{5} is lost, \bullet^{6} is awarded and \bullet^{7} is still available. Where an incorrect centre or radius from working then \bullet^{7} is available. However, if an incorrect centre or an incorrect radius appears ex nihilo \bullet^{7} is not available.
5. Do not accept $(6 \sqrt{10})^{2}$ for ${ }^{7}$.

Commonly Observed Responses:			
Candidate D Radius $=6 \sqrt{10}$ Interprets D as midpoint of BC Centre D is $(9 \cdot 5,3 \cdot 5)$ $(x-9 \cdot 5)^{2}+(y-3 \cdot 5)^{2}=360$	$\begin{aligned} & \bullet^{4} \checkmark \\ & \cdot{ }^{5} \times \\ & \bullet 6{ }^{6} \\ & \cdot{ }^{7} \sqrt{ } 1 \end{aligned}$	Candidate E Radius $=3 \sqrt{10}$ Interprets D as midpoint of AC Centre D is $(5,2)$ $(x-5)^{2}+(y-2)^{2}=90$	$\begin{aligned} & . .^{4} x \\ & .^{5} x \\ & \cdot 6 \quad r_{2} \\ & v_{1} \end{aligned}$
Candidate F $\text { Radius }=\sqrt{10}$ Interprets D as midpoint of $A C$ Centre D is $(5,2)$ $(x-5)^{2}+(y-2)^{2}=10$		Candidate G Radius $=6 \sqrt{10}$ $\frac{\mathrm{CD}}{\mathrm{BD}}=\frac{3}{2}$ or simply $\frac{3}{2}$ Centre D is $(11,4)$ $(x-11)^{2}+(y-4)^{2}=360$	$\cdot{ }^{5} \checkmark$.$^{6} x$ $\cdot{ }^{7} \sqrt{ }$

Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)	Method 1 - ${ }^{1}$ substitute for $\sin 2 x$ - ${ }^{2}$ simplify and factorise - ${ }^{3}$ substitute for $1-\cos ^{2} x$ and simplify	Method 1 -1 $\frac{2 \sin x \cos x}{2 \cos x}-\sin x \cos ^{2} x$ stated explicitly as above or in a simplified form of the above - $\quad \sin x\left(1-\cos ^{2} x\right)$ - $\quad \sin x \times \sin ^{2} x$ leading to $\sin ^{3} x$	3
		Method 2 -1 substitute for $\sin 2 x$ -2 simplify and substitute for $\cos ^{2} x$ ${ }^{3}$ expand and simplify	Method 2 - $\frac{2 \sin x \cos x}{2 \cos x}-\sin x \cos ^{2} x$ stated explicitly as above or in a simplified form of the above $\bullet^{2} \sin x-\sin x\left(1-\sin ^{2} x\right)$ - ${ }^{3} \sin x-\sin x+\sin ^{3} x$ leading to $\sin ^{3} x$	3

1. \bullet^{1} is not available to candidates who simply quote $\sin 2 x=2 \sin x \cos x$ without substituting into the expression given on the LHS. See Candidate B
2. In method 2 where candidates attempt \bullet^{1} and \bullet^{2} in the same line of working \bullet^{1} may still be awarded if there is an error at \bullet^{2}.
3. \bullet^{3} is not available to candidates who work throughout with A in place of x.
4. Treat multiple attempts which are not scored out as different strategies, and apply General Marking Principle (r).
5. On the appearance of $\mathrm{LHS}=0$, the first available mark is lost; however, any further marks are still available.

Commonly Observed Responses:

Candidate A

$2 \sin x \cos x$
$2 \cos x$
$\sin x-\sin x \cos ^{2} x=\sin ^{3} x$
$1-\cos ^{2} x=\sin ^{2} x \quad \bullet^{3} x$
$\sin ^{2} x=\sin ^{2} x$
In proving the identity, candidates must work with both sides independently ie in each line of working the LHS must be equivalent to the line above.

Candidate B

LHS $=\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x$

$$
\begin{aligned}
& \frac{\sin 2 x}{2 \cos x}=\frac{2 \sin x \cos x}{2 \cos x} \\
& =\sin x
\end{aligned}
$$

$\sin x-\sin x \cos ^{2} x \quad \bullet^{1} \checkmark$
$\sin x\left(1-\cos ^{2} x\right) \quad \bullet^{2} \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
11. (b)		\bullet^{4} know to differentiate $\sin ^{3} x$	$\bullet^{4} \frac{d}{d x}\left(\sin ^{3} x\right)$	
		\bullet^{5} start to differentiate	$\bullet^{5} 3 \sin ^{2} x \ldots$	
\bullet^{6} complete differentiation	$\bullet^{6} \ldots \times \cos x$			
Notes:				

[END OF MARKING INSTRUCTIONS]

