Standard Form

1. Each of these large oil containers holds 4.80×10^{8} litres of the fuel. How many litres are there altogether in the full tanks shown?
Give your answer in scientific notation.

2 KU
2. A newspaper report stated
"Concorde has now flown 7.1×10^{7} miles
This is equivalent to 300 journeys from the earth to the moon."
Calculate the distance from the earth to the moon.
Give your answer in scientific notation correct to 2 significant figures.
3. The planet Mars is at a distance of 2.3×10^{8} kilometres from the Sun.

The speed of light is $3.0 \times 10^{5} \mathrm{~km}$ per second.
How long does it take light from the Sun to reach Mars ?
Give your answer to the nearest minute.
4. A planet takes 88 days to travel round the Sun.

The approximate path of the planet round the
Sun is a circle with diameter 1.2×10^{7} kilometres.
Find the speed of the planet as it travels round the Sun.
Give your answer in kilometres per hour, correct to 2 significant figures.
5. The mass of a proton is approximately 1.8×10^{3} times greater than the mass of an electron.

If the mass of an electron is $9.11 \times 10^{-31} \mathrm{~kg}$, calculate the mass of a proton. Give your answer in scientific notation correct to 2 significant figures.
6. Large distances in space are measured in light years.

A camera on a space telescope, photographs a galaxy, a distance of 50 million light years away. One light year is approximately 9.46×10^{12} kilometres. Calculate the distance of the galaxy from the space telescope in kilometres.
Give your answer in scientific notation
7. The annual profit $(\mathfrak{£})$ of a company was 3.2×10^{9} for the year 1997. What profit did the company make per second.
Give your answer to three significant figures.
8. The total number of visitors to an exhibition was 2.925×10^{7}.

The exhibition was open each day from 5 June to 20 September inclusive.
Calculate the average number of visitors per day to the exhibition.
9. The mass of the sun is 2.2×10^{30} kilograms.

The mass of the earth is 5.97×10^{24} kilograms.
Express the mass of the earth as a percentage of the mass of the sun.
Give your answer in scientific notation.

Standard Form

1. $8 \times 4.80 \times 10^{8}=3.84 \times 10^{9}$
2. $7.1 \times 10^{7} \div 300=2.4 \times 10^{5}$
3. Time $=$ Distance \div Speed

Time $=2.3 \times 10^{8} \div 3.0 \times 10^{5}$
Time $=766.67 \mathrm{sec}=13$ minutes.
4. \quad Distance $=$ circumference $=2 \pi r$

Distance $=2 \pi \times 0.6 \times 10^{7}$
Speed $=$ Distance \div Time
Time $=88 \times 24=2112$ hours
Speed $=2 \pi \times 0.6 \times 10^{7} \div 2112$
Speed $=17849.95 \ldots=18000 \mathrm{kph}(2 \mathrm{sf})$
5. $1.8 \times 10^{3} \times 9.11 \times 10^{-31}=1.6398 \times 10^{-27}$
$=1.6 \times 10^{-27} \mathrm{~kg}(2 \mathrm{sf})$
6. $5 \times 10^{6} \times 9.46 \times 10^{12} \mathrm{~km}$
$=4.73 \times 10^{19} \mathrm{~km}$
7. 1 year (not leap year) $=365 \times 24 \times 60 \times 60$

$$
=31536000 \text { seconds }
$$

Profit $=£ 3.2 \times 10^{9} \div 31536000=£ 101.47133 \ldots$.
$=£ 101$ per second.
8. No. of days $=26(\mathrm{~J})+31(\mathrm{~J})+31(\mathrm{~A})+20(\mathrm{~S})$

$$
=108
$$

$\begin{aligned} 2.925 \times 10^{7} \div 108 & =270833.333 \\ & =270833 \text { visitors per day }\end{aligned}$
9. $5.97 \times 10^{24} \div 2.2 \times 10^{30} \times 100$

$$
\begin{aligned}
& =0.0002713 \ldots \ldots \% \\
& =2.71 \times 10^{-4} \%(3 \mathrm{sf})
\end{aligned}
$$

