Continuing Patterns

Solve the following problems by making a TABLE and continuing the PATTERN.

1 A supermarket often stacks tins like this.

If you added one row to make 4 rows the stack would look like this.
a) How many tins are in the stack?
b) Draw the next stack
c) Copy and complete this table

ROWS	1	2	3	4	5	6	7
TINS	1		6				

d) How many tins would you need
to make a stack 6 rows high ?
e) Continue your table to include a stack with 10 rows.
f) What is the highest stack you could make using 28 tins?

2 On Monday a magic plant is 2 cm high. By Tuesday the plant has doubled its height and is 4 cm high. Each day the plant doubles its height from the day before. How high will the plant be on Friday?

No. 1

Kelly and Sue rode their bikes to the park.
They rode 1 km every 4 minutes.
How far did they ride in 28 minutes?

$\times \times \times \times \times$
$\times \times \times \times \times$
$\times \times \times x$ $\times \times \times \times$

$\times \times \times$	$\times \times \times \times$
$\times \times \times$	$\times \times \times \times$
$\times \times \times$	$\times \times \times \times$
$\times \times \times$	$\times \times \times \times$

$\times \times \times \times \times$
$\mathbf{x} \times \times \times \times$
No. 4
a) Draw the fifth picture.
b) Describe the fiftieth picture.

a) Describe the pattern in the twentieth picture.
b) How many dots are there in the twentieth picture?

1 stage tower

2 stage tower

3 stage tower

These acrobats can build a human tower.
a) How many acrobats are there in each tower?
b) Draw diagrams to show a 4 stage tower and a 5 stage tower.
c) Copy and complete the table.

Number of Stages	1	2	3	4		
Number of Acrobats	1	3				

d) If it was possible to build a 12 stage tower, how many men would there be in it ?

a) How many striped squares are there if there is only one white square?
b) How many striped squares are there for two white squares?
c) Draw the next pattern.
d) Put your results in a table:
e) Try and work out the rule for your table.

HELP

What do you do to the top number to get the number below?

Still stuck?

For this rule you multiply by 5 and then add on a number.

Which number do you add on?

The rule is: "Multiply by ? and add on ?"
f) How many striped squares would you have if there were 9 white squares? (Use the rule.)

Finding the Rule
Find the rules for the following examples.
The first one has been done for you.

The rule is:
'multiply by four and add on 1'

1	2	3	4	5
3	5	7	9	11

1	2	3	4	5
3	7	11	15	19

c| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 8 | 11 | 14 | 17 |

1	2	3	4	5
4	6	8	10	12

1	2	3	4	5
6	11	16	21	26

1	2	3	4	5
2	10	18	26	34

Discovering the Rule

Copy and complete the tables and describe the rule in words. The first one has been done for you.

1	2	3	4	5	6	7	8	9	n
5	7	9	11	13	15	17	19	21	$2 n+3$

'multiply by 2 and add 3'

B

1	2	3	4	5	6	7	8	9	n
8	14	20	26						

c

1	2	3	4	5	6	7	8	9	n
2	5	8	11						

D

1	2	3	4	5	6	7	8	9	n
10	13	16	19						

E

1	2	3	4	5	6	7	8	9	n
								$3 n+7$	

Jiscovering the Rule 2
Zopy and complete the tables and describe the rule in words.
le first one has been done for you.

1	2	3	4	5	6	7	8	9	n
3	9	15	21	27	33	39	45	51	$6 n-3$

'multiply by 6 and take away 3'

1	2	3	4	5	6	7	8	9	n
7	10	13	16						

c

1	2	3	4	5	6	7	8	9	n
1	4	7	10						

D

1	2	3	4	5	6	7	8	9	n
13	20	27	34						

Harder Patterns

Look at this table:

1	2	3	4	5
4	7	12	19	28

To help find the pattern we look at the differences between the numbers. These are not the same, so we look at the differences between the differences.

These are the same and this gives us a clue to the pattern.

If the second differences are the same then the pattern involves $n \times n$ which can be written n^{2}.

n
$?$

Rewrite the table with a new row for n^{2}.

1	2	3	4	5
1	4	9	16	25
4	7	12	19	28

n
n^{2}
$n^{2}+3$

The pattern is that you "square the number and add three". $\left(n^{2}+3\right)$
Write these patterns in a similar way:-
a) "square the number and subtract 5 "
b) "square the number and multiply by 2 "
c) "square the number + add it to the number itself"

Harder Patterns Continued
Use the method shown on the previous page to write down the rules for each of the following.

A | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 6 | 11 | 18 | 27 |

n
$?$

B

1	2	3	4	5
8	11	16	23	32

n
$?$

C

1	2	3	4	5
0	3	8	15	24

n
$?$

D

1	2	3	4	5
2	8	18	32	50

n
$?$

E

1	2	3	4	5
14	17	22	29	38

n
$?$

F| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 99 | 96 | 91 | 84 | 75 |

n
$?$

G

1	2	3	4	5
1	8	27	64	125

n
$?$

Hint: look at the third difference.

Problems With Patterns

Solve these problems by making a table and looking for the rule for each one.
1 Mary makes a row of 3 equilateral triangles using matches as shown.

a)

She has used 7 matches.
Copy and complete this table.

Number of Triangles	1	2	3	4	5	6	20	
Number of Matches			7					89

b)

Write down a rule for finding the number of matches used to make a row of triangles.

2
When making booklets a printer counts how many sheets of paper are needed for different numbers of pages.

Number of Pages	Number of Sheets
12	3
16	4
20	5
24	6
$?$	7
$?$	$?$

a) Complete the pattern shown in the table.
b) Write down the rule for finding the number of sheets. monthly basis is shown in the table below.
a)

Complete the table.

Number of Months	1	2	3	4	5	6	7	8
Total Cost	$£ 15$	$£ 30$						

b)

> Write down a rule for the total cost of hiring the television for any number of months.
c) How much would it cost to hire a TV for 10 months?
d) If you had $£ 80$, for how long could you afford to hire a TV ?

4 Susan is making patterns with matches.
For 1 rectangle she needs 6 matches.
For 3 rectangles in a row she needs 14 matches.
a) Draw the pattern for 2 rectangles and 4 rectangles.
b) Write down the rule for finding the number of matches needed for any number of rectangles. (Hint: you may wish to make an organised table.)
d) How many matches would you need to make 10 rectangles?

Billy and Hanna like to collect "celebrity stickers".

Both have notebooks to put their stickers in.

Billy puts 5 stickers in his notebook each day and Hanna puts 3 stickers
in her notebook each day.
How many stickers will Hanna have in her notebook when Billy has 25 in his notebook?
(HINT: Continue this table.)

Day	Billy's Stickers	Hanna's Stickers
1	5	3
2	10	6

Primary Three were having their school picture taken.

The photographer put them in rows.
1 person was in the first row, 2 in the second row, 3 in the third and so on.

There are 7 rows of pupils in the picture. How many pupils are in the class?

Trickier Problems

1

It is traditional in many families at Christmas time for each family member to give a gift to each of the other members.

If a family of ten followed this tradition, how many
 gifts would be given? A pie can be cut into seven pieces with three straight cuts.

What is the largest number of pieces that can be made with eight straight cuts?

Robert decided to count the pennies in his piggy bank. After he counted them he made triangle patterns. His patterns looked like this:

4

First peg contains a 'tower' of 6 discs of decreasing radii.

PROBLEM: to transfer the discs to peg 3, arranged in the same order as on peg 1 , by moving only one disc at a time to any of the three pegs.

Also, no disc may sit above one of smaller radius. Describe the moves how many are there?

Complicated?
Try a similar simpler problem first.

To Marry Or Not To Marry

In the world of astrology, Zodlan considers it unwise for people born under the same sign to marry.

One should also avoid marriage to persons born under a sign adjacent to one's own.

Marriage between other pairs of signs are considered good.

How many pairs of signs will result in good marriages?

